THE UNIVERSITY OF TEXAS AT EL PASO
COLLEGE OF SCIENCE
DEPARTMENT OF MATHEMATICAL SCIENCES

Course #: STAT 5474
(CRN 17834)

Course Title: Introduction to Data Mining

Credit Hrs: 4

Term: Fall 2016 (Instruction 08/22/2016-12/01/2016)

Course Meetings & Location:
3:00-4:20pm MW Classroom Building C303
4:30-5:20pm MW Health Science/School of NURS 131

Prerequisite Courses: Generalized linear models; Some R programming experiences would be plus, though not required.

Instructor: Xiaogang Su
Office Location: Bell Hall 320
Contact Info: Phone: (915) 747-6860 [O]
xsu@utep.edu

Office Hours: 1:00-2:00pm MW

Class Web page: https://sites.google.com/site/xgsu00/home/stat5474

Textbook(s), Materials:

Course Description and Learning Outcomes:

With the advent of computers and database management tools, vast amounts of data are being generated in various fields. As Rutherford D. Roger states, “We are drowning in information and starving for knowledge.” Data Mining is the process of exploring and analyzing, by automatic or semiautomatic means, large quantities of observational data in order to discover meaningful patterns and models. By applying data mining techniques, data miners can fully exploit data patterns and behavior, gain insider understanding of the data, and produce new knowledge that decision-makers can act upon.

Data Mining emerges as an interdisciplinary field with joint inputs from statistics, computer science, machine learning, and artificial intelligence. This course is intended to cover some commonly-used data mining techniques, with more focus on the most technical part - statistical learning algorithms. The materials are arranged in two main categories: unsupervised learning and supervised learning. A tentative outline of the specific topics is provided below.
Topic Outline
1. Introduction to Data Mining;
2. R Preliminaries: Downloading and Installing; Introduction to R; Dealing with Large Data Sets in R
3. Data Preparation: Data Cleaning; Sampling and Partitioning Data; Missing Value Imputation; Exploration.

Part I: Unsupervised Learning
5. Principal Components: PCA and its extensions such as Principal Curves and Surfaces; Factor Analysis (Exploratory and Confirmatory);
7. Web Mining: Google PageRank

Part II: Supervised Learning
8. Linear Regression: Least Squares Estimation; Assessment and Validation; Model Diagnostics; Generalized LS; Partial/Total LS
9. Variable Screening and Selection: Variable Relevance/Importance - the RELIEF algorithm; Univariate/Bivariate Screening; Stepwise Variable Selection and Regularization - ridge regression, LASSO and its variants, etc.;
10. Logistic Regression: Model Assessment, Validation, and Regularization; Classification Errors, Odds Ratio, ROC, etc.; Generalized Linear Models (GLM);
11. Regression/Classification Trees: Pros and Cons; Impurity Measures; Pruning; Tree Size Selection; and Interpretation; Generalization to Regression, Censored Survival Data, and Longitudinal Data;
12. Ensemble Models: Boosting; Bagging and Random Forests; Stacking.

Course Activities/Assignments:
Presentations and projects will be assigned throughout the semester. NO LATE COURSEWORK WILL BE ACCEPTED, EXCEPT EXTREME SCENARIOS.

Assessment of Course Objectives:
Each student will be evaluated by the quality of his/her own assigned presentations as well as their contribution to the discussions during other students’ presentations.

Course Schedule:
08/22 Class starts
10/28 Class drop deadline
12/05 - 12/09 Final Exam Period
09/05 Labor Day
11/24-11/25 Thanksgiving

Note that the College of Science will not approve any requests for drops after the class drop date deadline.
Grading Policy: There will be a number of computer assignments and a final project. The assignments make up 60% and the final project makes up 30% to your final score. For the final project, students are given the freedom to select data from whatever field they are interested in. Students should make their own plans to collect data, raise interesting research questions, and consult the instructor for the adequacy of the project. Also, each student will have the opportunity to present their work in class. There will also be a few in-class quizzes or exams, which make up 10%. No make-up exam will be given and no late project submission is accepted without justifiable reasons.

Letter grades are determined according to the following scale:

Letter Grade	Score Range
A | 90-100
B | 80-89
C | 70-79
D | 60-69
F | <60

Make-up Policy: All other assignments must be turned in on time.

Attendance Policy: Lecture and lab attendance is required and helpful to decide borderline grades; TWO or more unexcused absences (from either lab or lecture) may result in an instructor-initiated drop or final grade reduction. Your academic advisor will be consulted before final action is decided and taken. If a student has to be absent from a class, he/she will be responsible for catching up with course material.

Academic Integrity Policy: Please see http://academics.utep.edu/Default.aspx?tabid=23785

Civility Statement: This is a class where participation is required. You will be participating in classroom discussions. All students will be treated with respect.

Disability Statement: If you have a disability and need classroom accommodations, please contact The Center for Accommodations and Support Services (CASS) at 747-5148, or by email to cass@utep.edu, or visit their office located in UTEP Union East, Room 106. For additional information, please visit the CASS website at www.sa.utep.edu/cass.

Military Statement: If you are a military student with the potential of being called to military service and/or training during the course of the semester, you are encouraged to contact me as soon as possible.