COURSE SYLLABUS

MME 4309 CRN 20823
MME 5390 CRN 24925
MME 6390 CRN 24541

INSTRUCTOR
Dr. Stella A. Quinones
stellaq@utep.edu

TA
Jiahao Xu
jxu3@miners.utep.edu

OFFICE HOURS
M and R, 4-5 pm

COURSE DESCRIPTION
Application of electrochemistry and engineering principles to the corrosion, passivity and protection of metals and alloys. This course includes an introduction to materials corrosion and focuses on the scientific theory associated with corrosion, the prevention and/or minimization of corrosion, and the different forms of corrosion in engineering applications. The first half of the course is an overview of the electrochemical background necessary to understand the corrosion process. This includes the potential measurement of electrolytic cells, construction of Pourbaix Diagrams and polarization diagrams, and factors affecting corrosion. The second part of the course is a combination of the prevention and control of corrosion and a review of the different types of corrosion associated with different applications.

PREREQUISITES
MME 2303 and MME 3308

LEARNING OUTCOMES
Students will be able to:
• Define corrosion for metals, polymers and ceramics
• Understand the impact of corrosion on human safety, material resources, the environment, and the economy
• Recognize and recall basic electrochemistry terms and processes related to oxidation and reduction reactions, thermodynamics, kinetics and passivity
• Discuss the different forms of corrosion
• Identify materials and the environments in which they are susceptible to corrosion
• Explain how corrosion can be controlled by design, environment modifications, inhibitors, coatings, anodic protection, and cathodic protection
• Understand aqueous corrosion related to passivation/depassivation, localized corrosion, galvanic corrosion and cathodic protection
• Understand corrosion testing and modern techniques
• Calculate corrosion rates under different conditions
• Describe corrosion monitoring methods

TEXTBOOK

GRADE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Undergraduates</th>
<th>Graduate & PhD Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>- 10%</td>
<td>- 10%</td>
</tr>
<tr>
<td>Exams</td>
<td>- 60%</td>
<td>Lecture Reviews and Group Updates - 5%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>- 5%</td>
<td>Exams - 60%</td>
</tr>
<tr>
<td>Project Paper</td>
<td>- 15%</td>
<td>Quizzes - 5%</td>
</tr>
<tr>
<td>Project Presentation</td>
<td>- 10%</td>
<td>Project Paper - 10%</td>
</tr>
<tr>
<td>Project Presentation</td>
<td>- 10%</td>
<td>Project Presentation - 10%</td>
</tr>
</tbody>
</table>

COURSE STRUCTURE
The course structure is organized as weekly modules which include: (1) a reading assignment, (2) 1-3 homeworks/week, (3) daily reviews by graduate students post and (4) occasional assignments related to the semester project. Each reading assignment should be completed before each lecture, and the homework is used to emphasize the material covered in the weekly module. Graduate students will take turns presenting a 5-minute review of the prior lecture at the start of each lecture. Graduate students will also serve as team leaders and will provide periodic Project updates. Assignments related to the development of the paper will also be given every couple of weeks to help direct students and keep students on track. Students are encouraged to start the research for their paper after week 1 and to work consistently throughout the semester. This will enhance your knowledge about corrosion and its importance, and will provide relevance for the concepts covered in class.
## Activity	Quantity	Due Dates/
Lectures	Twice per week	Mondays and Wednesdays, noon – 1:30 pm
Reading	1 hour per week	Before Monday each week
Homework	1-3 homeworks/week	Due in class or at start of next lecture
Exams	Three per semester	During class (1 hour 20 minutes)
Project	One per semester	Electronic copy of paper: Friday, May 6th, by noon
		Presentation: Friday, May 13th, 10 am-12:45 pm

LECTURE
This course is fast paced and critical concepts are covered during every lecture. A Teams link will be sent to students who contact the professor at least 24 hours before the lecture (exceptions exist where possible).

HOMEWORK
The points assigned to each assignment will vary, and the homework grade will be equal to the total points earned divided by the total possible homework points. Homework grades will be uploaded to Blackboard with the homework number, description and possible points. Homework will be completed on engineering paper using the standard format for the course. Problem solving and units will be emphasized. Each student is expected to use the standard format and to turn in legible work. Work turned in that is illegible will not be graded and will be returned with a zero grade.

EXAMS
Exams are scheduled on the dates shown below:
Exam I: Week 6 – February 23rd
Exam II: Week 11 – April 6th
Exam III: Week 15 – May 4th

Each exam is worth 20%, for a total of 60% of the final grade.
PROJECT
The project will consist of a paper and presentation, worth 25% of the final grade (for undergraduate students) and 20% (for graduate students). The paper will consist of a double spaced 6 page report (not counting figures, tables and references) with a minimum of 10 sources. The presentation will include a 10 minute powerpoint presentation during final exam week. It is recommended that students look up corrosion failures to begin looking for a topic that interests them, and to ensure that there are enough useful refereed journal articles (minimum of 6) that supports their research. Journal articles are different from news articles.

Students will be required to turn in the following parts of the project based on the timeline below:

<table>
<thead>
<tr>
<th>Project Activity</th>
<th>Timeline (Due Dates)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Topic Selection</td>
<td>Feb 7th</td>
</tr>
<tr>
<td>2. List of Sources (IEEE Format)</td>
<td>Feb 28th</td>
</tr>
<tr>
<td>3. Outline</td>
<td>Mar 21st</td>
</tr>
<tr>
<td>4. Draft of Paper</td>
<td>Apr 20th</td>
</tr>
<tr>
<td>5. Final Paper</td>
<td>May 6th</td>
</tr>
<tr>
<td>6. Presentation</td>
<td>May 13th</td>
</tr>
</tbody>
</table>

Students must earn a 70 (C) in order to pass the course, based on the grading structure shown below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100-90</td>
</tr>
<tr>
<td>B</td>
<td>80-89</td>
</tr>
<tr>
<td>C</td>
<td>70-79</td>
</tr>
<tr>
<td>D</td>
<td>60-69</td>
</tr>
<tr>
<td>F</td>
<td>59-0</td>
</tr>
</tbody>
</table>

COMMUNICATION
Communication will be through Blackboard as follows:
Email: Please use the Email option on the course Blackboard shell to contact me. I will make every attempt to respond to your e-mail every Monday and Wednesday by the end of the day.
Class Cafe: There is a Class Cafe link in the navigation panel. Please use this link to ask questions about the module content or to post questions you believe other students may also have. Please respond to other students’ posts with a helpful response. This is provided for your use.

Announcements: Check your email and the Blackboard announcements frequently for any updates, deadlines, or other important messages. It is important that you communicate with your professor regarding any personal issues that might impact your attendance or performance in this course (or any other course). This will ensure that you have the resources you need to succeed in your course(s).

COURSE DROP POLICY
Students who fail to turn in 5 assignments will be dropped from the course. The student withdrawal deadline with an automatic ‘W’ is April 1st. After April 1st, students may drop the course, and will receive a grade of W or F. To drop this class, please contact the Registrar’s Office to initiate the drop process. If you cannot complete this course for whatever reason, please contact me. If you do not, you are at risk of receiving an “F” for the course.

INCOMPLETE GRADE POLICY
Incomplete grades may be requested only in exceptional circumstances after you have completed at least half of the course requirements and if the student has a passing grade at the time of the request. Talk to me immediately if you believe an incomplete is warranted. If granted, we will establish a contract of work to be completed with deadlines.

OTHER USEFUL INFORMATION:
You will be expected to bring a laptop to class occasionally in order to complete in class assignments. If you do not own a laptop, please contact your professor as soon as possible.
TECHNICAL ISSUES
I strongly suggest that you submit your work with plenty of time to spare in the event that you have a technical issue of any kind. If you are experiencing difficulties with email or blackboard, please contact the UTEP Help Desk.

NETIQUETTE:
• Always consider your audience.
• Respect and courtesy must be provided to classmates and to instructor at all times. No harassment or inappropriate communications will be tolerated.
• When reacting to someone else’s question or comments, address the ideas, not the person.
• Blackboard is not a public internet venue; all postings to it should be considered private and confidential. Whatever is posted on in these online spaces is intended for classmates and professor only. Please do not copy documents and paste them to a publicly accessible website, blog, or other space. If students wish to do so, they have the ethical obligation to first request the permission of the writer(s).

ACCOMODATIONS POLICY
The University is committed to providing reasonable accommodations and auxiliary services to students, staff, faculty, job applicants, applicants for admissions, and other beneficiaries of University programs, services and activities with documented disabilities in order to provide them with equal opportunities to participate in programs, services, and activities in compliance with sections 503 and 504 of the Rehabilitation Act of 1973, as amended, and the Americans with Disabilities Act (ADA) of 1990 and the Americans with Disabilities Act Amendments Act (ADAAA) of 2008. Reasonable accommodations will be made unless it is determined that doing so would cause undue hardship on the University. Students requesting an accommodation based on a disability must register with the UTEP Center for Accommodations and Support Services.
COVID-19 ACCOMMODATIONS: Students are not permitted on campus when they have a positive COVID-19 test, exposure or symptoms. If you are not permitted on campus, you should contact me as soon as possible so we can arrange necessary and appropriate accommodations. Students who are considered high risk according to CDC guidelines and/or those who live with individuals who are considered high risk may contact Center for Accommodations and Support Services (CASS) to discuss temporary accommodations for on-campus courses and activities.

COVID-19 PRECAUTIONS: You must STAY AT HOME and REPORT if you (1) have been diagnosed with COVID-19, (2) are experiencing COVID-19 symptoms, or (3) have had recent contact with a person who has received a positive coronavirus test. Reports should be made to COVIDaction@utep.edu. If you know of anyone who should report any of these three criteria, you should encourage them to report. If the individual cannot report, you can report on their behalf by sending an email to COVIDaction@utep.edu.

If you are feeling unwell, please let me know as soon as possible, and alternative instruction will be provided. Students are advised to minimize the number of encounters with others to avoid infection. It is recommended that students wear face coverings when in common areas of campus or when others are present. Please wear a face covering over your nose and mouth at all times in this class.

SCHOLASTIC INTEGRITY
Academic dishonesty is prohibited and is considered a violation of the UTEP Handbook of Operating Procedures. It includes, but is not limited to, cheating, plagiarism, and collusion. Cheating may involve copying from or providing information to another student, possessing unauthorized materials during a test, or falsifying research data on laboratory reports. Plagiarism occurs when someone intentionally or knowingly represents the words or ideas of another as ones' own. Collusion involves collaborating with another person to commit any academically dishonest act. Any act of academic dishonesty attempted by a UTEP student is unacceptable and will not be tolerated. All suspected violations of academic integrity at The University of Texas at El Paso must be reported to the Office of Student Conduct and Conflict Resolution (OSCCR) for possible disciplinary action. To learn more HOOP: Student Conduct and Discipline.
COPYRIGHT STATEMENT FOR COURSE MATERIALS
All materials used in this course are protected by copyright law. The course materials are only for the use of students currently enrolled in this course and only for the purpose of this course. They may not be further disseminated.