MECH 3314: Fluid Mechanics

https://sites.google.com/view/fluid-mechanics-utep/

Class time and location: TR 1030 - 1150, LART 319
Instructor: Dr. Piyush Kumar, pkumar2@utep.edu
Teaching Assistant: Aaron A Rodriguez (aarodriguez29@miners.utep.edu),
Office hours: MW 1200-1330 or by appointment (MS Team)
Class delivery: The class will be delivered in in-person mode or as informed by the instructor.
Participation requirements: You must attend at least 75% of all the classes in person.

Goals and Objectives: Fluid Mechanics is a fundamental course in mechanical engineering. The purpose of this course is to give you an understanding of the physical mechanisms involved in fluid flows including predictions of flows and resulting forces. This course covers fundamental concepts of fluid mechanics with a broad range of engineering and technological applications. An understanding of fluid mechanics is necessary since fluid dynamical processes are an essential part of the design processes of vehicles, power plants, chemical processing units, buildings, bridges, and among others.

Knowledge, Skills, and Abilities gained: Knowledge of physical quantities important to fluid flow, Ability to apply fundamental laws in control volume form to engineering situations, Knowledge of fluid flows in pipes and around objects, and Ability to apply basic laws of fluid mechanics to compute various quantities.

Impact on subsequent courses in curriculum: Knowledge needed to understand heat transfer, thermal design, and other thermal fluid system courses.
Prerequisites: All students taking the course must have a basic knowledge of engineering (Thermodynamics laws, Newtonian Mechanics/Laws) and differential and integral calculus.

MATERIALS COVERED:
- Review of BASIC Concepts: Properties, Kinematics, Statics [Ch 1-5]
- MASS, BERNOUlli, AND ENERGY EQUATIONS [Ch 5]
- MOMENTUM ANALYSIS OF FLOW SYSTEMS [Ch 6]
- DIMENSIONAL ANALYSIS AND MODELING [Ch 7]
- INTERNAL FLOW [Ch 8]
- EXTERNAL FLOW: DRAG AND LIFT [Ch 11]
- TURBOMACHINERY [Ch 14]

GRADING: There will be several assignments at regular intervals during the semester. You are required to submit the assigned work on or before the deadline. Late submission of the assigned work will not be allowed unless medical and emergency reasons exist. The following percentages of the assignments, exams, and projects will constitute the basis for the assigning of the final grade in the course:
Class performance & Quizzes: 15%, Homework: 15%, attendance: 10%
Exam 1: 20%, Exam 2: 20%, Exam 3: 20%
Grading criterion: A (≥ 90%); B(<90% & ≥ 80%); C(<80% & ≥ 70); D(<70% & ≥ 60%); F(<60%)

Note: Any outstanding issues related to grading of assigned work (quizzes, exams, homework or projects) must be resolved within two weeks from the day the graded work is returned. There will be no makeup exams or quizzes.

Academic Misconduct: Students are encouraged to work together to discuss the subject, however, all graded materials must represent the student's individual work. Scholastic dishonesty is the attempt of any student to present as his or her own work of another, or any work which he/she has not honestly performed, or attempting to pass any examination by improper means. Scholastic dishonesty is a serious offense and will not be accepted. Academic misconduct will be handled according to the current university policy.

Reasonable Accommodation Policy: Any student in this course who has a disability that may prevent him or her from demonstrating his or her abilities should contact me personally as soon as possible so we can discuss the accommodation necessary to ensure full participation and facilitate your educational opportunities.
COURSE PLAN

REVIEW OF BASIC CONCEPTS (Ch 1-5) [1 Week]
Week 1:
 Properties,
 Statics,
 Kinematics: Lagrangian and Eulerian Descriptions, The Reynolds Transport Theorem
Homework

5 MASS, BERNAULLI, AND ENERGY EQUATIONS [4 Weeks]
Week 2:
5–1 Introduction 172
 Conservation of Mass 172
 Conservation of Momentum 172
 Conservation of Energy 172
Homework
Week 3:
5–2 Conservation of Mass 173
 Mass and Volume Flow Rates 173
 Conservation of Mass Principle 175
 Moving or Deforming Control Volumes 177
 Mass Balance for Steady-Flow Processes 177
 Special Case: Incompressible Flow 178
Homework
Week 4:
5–3 Mechanical Energy and Efficiency 180 5–4
 The Bernoulli Equation 185
 Acceleration of a Fluid Particle 186
 Derivation of the Bernoulli Equation 186
 Force Balance across Streamlines 188
 Unsteady, Compressible Flow 189
 Static, Dynamic, and Stagnation Pressures 189
 Limitations on the Use of the Bernoulli Equation 190
 Hydraulic Grade Line (HGL) and Energy Grade Line (EGL) 192
Homework
Week 5:
5–5 Applications of the Bernoulli Equation 194
5–6 General Energy Equation 201
 Energy Transfer by Heat, Q 202
 Energy Transfer by Work, W 202
5–7 Energy Analysis of Steady Flows 206
 Special Case: Incompressible Flow with No Mechanical Work Devices and Negligible Friction 208
 Kinetic Energy Correction Factor, a 208
Homework
MOMENTUM ANALYSIS OF FLOW SYSTEMS [Ch 6] [2 Weeks]
Week 6
6–1 Newton’s Laws and Conservation of Momentum 228
6–2 Choosing a Control Volume 229
6–3 Forces Acting on a Control Volume 230
6–4 The Linear Momentum Equation 233
 Special Cases 235
 Momentum-Flux Correction Factor, b 235
 Steady Flow 238
 Steady Flow with One Inlet and One Outlet 238
 Flow with No External Forces 238
Homework

Week 7
6–5 Review of Rotational Motion and Angular Momentum 248
6–6 The Angular Momentum Equation 250
 Special Cases 252
 Flow with No External Moments 253
 Radial-Flow Devices 254
Homework

DIMENSIONAL ANALYSIS AND MODELING [Ch 7] [2 Weeks]
Week 8
7–1 Dimensions and Units 270
7–2 Dimensional Homogeneity 271
Nondimensionalization of Equations 272
7–3 Dimensional Analysis and Similarity 277
Homework

Week 9
7–4 The Method of Repeating Variables and the Buckingham Pi Theorem 281
 Historical Spotlight: Persons Honored by Nondimensional Parameters 289
7–5 Experimental Testing and Incomplete Similarity 297
 Setup of an Experiment and Correlation of Experimental Data 297
 Incomplete Similarity 298
 Wind Tunnel Testing 298
 Flows with Free Surfaces 301
Homework

INTERNAL FLOW [Ch 8] [2 Weeks]
Week 10
8–1 Introduction 322
8–2 Laminar and Turbulent Flows 323
 Reynolds Number 324
8–3 The Entrance Region 325
 Entry Lengths 326
8–4 Laminar Flow in Pipes 327
 Pressure Drop and Head Loss 329
 Inclined Pipes 331
 Laminar Flow in Noncircular Pipes 332
8–5 Turbulent Flow in Pipes 335
 Turbulent Shear Stress 336
 Turbulent Velocity Profile 338
 The Moody Chart 340
 Types of Fluid Flow Problems 343

Homework

Week 11
8–6 Minor Losses 347
8–7 Piping Networks and Pump Selection 354
 Piping Systems with Pumps and Turbines 356
8–8 Flow Rate and Velocity Measurement 364
 Pitot and Pitot-Static Probes 365
 Obstruction Flowmeters: Orifice, Venturi, and Nozzle Meters 366
 Positive Displacement Flowmeters 369
 Turbine Flowmeters 370
 Variable-Area Flowmeters (Rotameters) 372
 Ultrasonic Flowmeters 373
 Electromagnetic Flowmeters 375
 Vortex Flowmeters 376
 Thermal (Hot-Wire and Hot-Film) Anemometers 377
 Laser Doppler Velocimetry 378
 Particle Image Velocimetry 380

Homework

EXTERNAL FLOW: DRAG AND LIFT [Ch 11] [1 Week]
Week 13
11–1 Introduction 562
11–2 Drag and Lift 563
11–3 Friction and Pressure Drag 567
 Reducing Drag by Streamlining 568
 Flow Separation 569
11–4 Drag Coefficients of Common Geometries 571
 Biological Systems and Drag 572
 Drag Coefficients of Vehicles 574
 Superposition 577
11–5 Parallel Flow over Flat Plates 579
 Friction Coefficient 580
11–6 Flow over Cylinders and Spheres 583
 Effect of Surface Roughness 586
11–7 Lift 587
Homework

TURBOMACHINERY [Ch 14] [1 Week]
Week 14
14–1 Classifications and Terminology 736
14–2 Pumps 738
 - Pump Performance Curves and Matching a Pump to a Piping System 739
 - Pump Cavitation and Net Positive Suction Head 745
 - Pumps in Series and Parallel 748
 - Positive-Displacement Pumps 751
 - Dynamic Pumps 754
 - Centrifugal Pumps 754
 - Axial Pumps 764
14–4 Turbines 781
 - Positive-Displacement Turbines 782
 - Dynamic Turbines 782
 - Impulse Turbines 783
 - Reaction Turbines 785

Homework