Instructor Contact Information

This course is taught by Dr. Olga Kosheleva. She may be contacted within the Blackboard course system or by email at olgak@utep.edu, or by phone at 915-747-7588. Dr. Kosheleva's UTEP websites are:

www.cs.utep.edu/vladik/olgavita.html

Instructor Office Hours: Tuesdays and Thursdays, 4 pm - 5:30 pm in Educ. 405 or by appointment.

Course Description

Course: MTED 6310
Topic: Research Trends in Mathematics and Science

Credits: 3-0
Delivery method: Hybrid

Education Bldg., Room 405, Tuesdays/Thursdays, 5:30 – 8:20 PM

The course will explore critical issues of the development of fundamental mathematical and scientific ideas. We will investigate in depth the ideas of connecting and integrating these subject areas. We will also examine implications for the teaching and learning of mathematics and science. All students are expected to stay current with assigned readings and activities and to actively participate in whole class discussions and individual projects.

Information about HB 2504 Requirements

Texas House Bill 2504 requires each institution of higher education's faculty to provide the following syllabus related items, at a minimum:

1. A brief description of each major course requirement, including each major assignment and examination
2. the learning objectives for the course
3. a general description of the subject matter of each lecture or discussion
4. and, list of any required or recommended readings.

Recommended Readings and other resources

- Handbook of Research Design in Mathematics and Science Education (2000). E-book. Available at UTEP Net Library. (selected chapters, these chapters will be posted on BlackBoard)
- Alexandrov, A. D. Selective works (copy will be provided on BlackBoard).

Additional Readings

- Science For All Americans, Rutherford, F. James and Algren, Andrew New York, Oxford University Press. (1990)
 Online copy:
 In English
 http://www.project2061.org/publications/sfaa/online/sfaatoc.htm
 In Spanish
 http://www.project2061.org/esp/publications/sfaa/online/sfaatoc.htm
- Texas Essential Knowledge and Skills (TEKS)
- Texas College Readiness Standards
 http://www.thecb.state.tx.us/index.cfm?objectid=EADF962E-0E3E-DA80-BAAD2496062F3CD8
- Common Core Standards
 http://ime.math.arizona.edu/progressions/
- National Council for Teachers of Mathematics (NCTM) standards
 - http://www.nctm.org/
 - http://standardstrial.nctm.org/triallogin.asp
 - http://www.fayar.net/east/teacher.web/math/illuminations/index2.html
- NCTM curriculum focal points
- National Science Teachers Association (NSTA)
- The Next Generation Science Standards
- The Trends in International Mathematics and Science Study - is a world-wide assessment and research project that conducts mathematics and science assessments to 4th and 8th grade students from more than 60 counties including the United States every four years.
 http://timssandpirls.bc.edu/
 http://timssvideo.com
- Texas State University System Mathematics for English Language Learners Project
• These websites provide a wide selection of virtual manipulatives interactive games for teaching mathematics:
 http://nlvm.usu.edu/en/nav/vlibrary.html
 http://www.shodor.org/interactivate/activities/
 http://www.fi.uu.nl/rekenweb/en/
• Book "How Students Learn." You can read it online at http://www.nap.edu/books/0309074339/html/1.html
• Book "Adding It Up: Helping Children Learn Mathematics." You can read it online at http://books.nap.edu/books/0309069955/html/
• Book “Helping Children Learn Mathematics.” You can read it online at http://www.nap.edu/catalog.php?record_id=10434

Course Learning Outcomes/Goals
Upon completion of this course, students should be able:
• To understand differences and similarities between discipline of mathematics and science
• To understand the cognitive processes that result in effective learning and teaching of mathematics and science
• To understand the underlying ideas for connecting and integrating mathematics and science
• To reflect on implementation of the key findings of learning mathematics and science in the classroom with emphasis on creating successful learning environments
• To critique and evaluate the key findings of the learning mathematics and science in order to better understand the phenomenon of effective learning.

Table 1. Student learning outcomes and assessment

<table>
<thead>
<tr>
<th>Student Learning Outcomes</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>By the end of course, the student will be able</td>
<td>To evaluate these outcomes, the faculty will use the following assessment procedure</td>
</tr>
<tr>
<td>To understand differences and similarities between discipline of mathematics and science</td>
<td>a. Class interactive discussions; b. Written reflections/critiques; c. Final Critique.</td>
</tr>
<tr>
<td>To understand the cognitive processes that result in effective learning and teaching of mathematics and science</td>
<td>a. Class interactive discussions; b. Written reflections/critiques; c. Final Critique.</td>
</tr>
<tr>
<td>To reflect on implementation of the key findings of learning mathematics and science in the classroom with emphasis on creating successful learning environments</td>
<td>a. Class interactive discussions; b. Written reflections/critiques; c. Final Critique.</td>
</tr>
<tr>
<td>To understand the underlying ideas for connecting and integrating mathematics and science</td>
<td>a. Class interactive discussions; b. Written reflections/critiques; c. Final Critique.</td>
</tr>
</tbody>
</table>

Academic Integrity

It is expected that work you submit will represent your own effort (or your own group's effort, if it is a group project), will not involve copying from or accessing unauthorized resources or people (e.g., from a previous year's class), and will appropriately acknowledge allowable references that you do consult. If, in future, in your articles and grant submissions you will be
using ideas developed and presented by other students in this class, you are required to appropriately acknowledge their contributions. Violations are unacceptable and will be referred to the Dean of Students Office for possible disciplinary action. Don't resubmit work completed for other classes without specific acknowledgment and permission from me.

If you are found to be cheating or plagiarizing, you will be subject to disciplinary action, per UTEP catalog policy. Refer to http://www.utep.edu/dos/ for further information. In addition, you may also see the Regent Rules and Regulations at http://www.utsystem.edu/bor/rules/ The following is a website provides a brief overview of how to accurately cite sources: http://www.bedfordstmartins.com/online/citex.html

Course Policy/Requirements

To be successful in this course, class functionality, assignments and activities rely heavily on your early understanding of expectations. You are also responsible for doing all the work and going over your readings and completing assignments the. These courses take as much, if not more time than traditional classes. Please check course announcements/emails every day to keep yourself abreast of any changes in course content and deadlines.

1. It is required that you have a UTEP e-mail. You must use your UTEP email account for all correspondence related to this course and check it regularly to ensure that you receive important messages about the course on a timely basis. If you are enrolled in this course, you already have an email account created for you. If you do not remember your UTEP email address and password, please call 915-747-5257 or go to "https://newaccount.utep.edu/

2. Mandatory file formats: all text attachments you upload to assignments, discussion postings, or email messages must be MS Word documents (.doc); all images should be in JPEG Format (.jpg); if you send your work in a file, its name should always include time period submission number and your name (last and first name).

3. The general format used by papers in this course is APA version 6.

4. It is responsibility of any student desiring to drop the course to turn in all the necessary drop forms. The instructor will not drop students who are no longer attending the class.

5. The instructor reserves the right to drop students who have not adequately participated during one week of class (did not submit any completed assignments to the correct Assignment Folder and/or to the correct Blackboard Discussion folder). The instructor can drop any student any time a student violates the written rules/requirements for remaining in good standing in the course.

Course Assignments

1. Writing and presenting "mock" grant proposal (10-15 pages, not counting references, double spaced, APA style, NSF format). Reviewing of other proposals. Theme: mathematics education, science education (20 points maximum credit).

2. Attendance/Participation/ Discussion: each student is encouraged actively participate in all the activities (16 points maximum credit).
3. **Critiques/presentations:** each student will write critiques addressing selected readings (Reading 1 and Reading 2 will be provided on Blackboard. There will be two critiques assigned during the class (8 points maximum credit for each critique/presentation; 2 critiques x 8 points = 16 points maximum credit).

4. **Article search/presentation:** there will be four searches during the class (7 points maximum credit for each critique/presentation; 4 critiques x 7 points = 28 points maximum credit).

5. **Final critique for the Reading 3** will be selected by the student after consultation with Dr. Kosheleva. Requirements: 10-12 pages, double spaced, APA style. (20 points maximum credit).

Tentative Course Schedule/Calendar and Description of the Assignments

<table>
<thead>
<tr>
<th>Dates</th>
<th>Assignments (required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 10</td>
<td>Syllabus Introduction. Presentation about advanced peer-reviewed articles search using UTEP Library electronic databases. Mathematics Education article presentation. Implementing advanced peer-reviewed articles search using UTEP Library electronic databases and other search resources.</td>
</tr>
<tr>
<td>June 12 ONLINE (1)</td>
<td>Students will post articles (found during search) in the Discussion Forum “June 12.” Students’ presentations of search for the articles (provide exact procedure on how you found articles; show examples of how you used “reversed search.”) Explain how you selected articles.</td>
</tr>
<tr>
<td>(2)</td>
<td>Students will post partial critiques in the Discussion Forum “Mathematics Education Reading 1.”</td>
</tr>
<tr>
<td>(3)</td>
<td>Students email (via BlackBoard email) preliminary topic ideas for mock grant proposal to Dr. Kosheleva.</td>
</tr>
<tr>
<td>June 17</td>
<td>Discussion on questions about Syllabus. Students’ presentations of parts of their critiques for Reading 1 (submitted on BlackBoard Discussion Forum). Students’ presentation of preliminary topic ideas for mock grant proposal. Discussion of innovative/state-of-the-art development in math and science, and their applications to mathematics and science education. Students continue working on mock grant proposal (due on July 1).</td>
</tr>
<tr>
<td>June 19</td>
<td>Students’ presentations of most current parts of their critiques for Reading 1 (submitted on BlackBoard Discussion Forum). Students start working on writing critiques for Mathematics/Science Education</td>
</tr>
</tbody>
</table>
Reading 2 (due on July 3).

Discussion of innovative/state-of-the-art development in math and science, and their applications to mathematics and science education.

Students continue working on mock grant proposal (due on July 1).

Students’ presentations of most current parts of their critiques for Reading 1 (submitted on BlackBoard Discussion Forum).

Students continue working on writing critiques for Mathematics/Science Education Reading 2 (due on July 3).

During this time period we will discuss concepts of measurement as a foundation for quantitative reasoning in mathematics. Any measurement is a comparison with a known quantity, called the unit of comparison. This known quantity is arbitrary, but must be known to all those to whom one wants to communicate the comparison. In this chapter the measurements of length, area, volume, weight, capacity, value (money), angle, and time will be discussed.

Complete the following exercises (orally). You will be asked to present your solutions in class:

(1) On p. 26 the similarity between the expression of length (e.g., of 50 inches) and numeral in our numeration system is explained. Please, provide at least two other examples of such similarity (explain in more details how you understand this similarity);

(2) p. 28, Oral exercise 1.56;

(3) p. 29, Oral exercise 1.57;

(4) p. 30, Oral exercise 1.58;

(5) p.31 (1.3.6), calculate volume of a rock submerged in the water;

(6) p. 32, Oral exercise 1.61;

(7) Measurement of time. Please, explain why the author states that the way we write time measurement is very similar to base sixty numeral. However, he states that it is slightly different from base sixty. Please, explain where the difference is.

Students’ presentations of their solutions to Oral exercises.

Please, conduct article search, and post the peer-reviewed articles that discuss ideas similar to
<table>
<thead>
<tr>
<th>Date</th>
<th>Task</th>
</tr>
</thead>
</table>
| June 26 | Students’ presentations of most current parts of their critiques for Reading 1 (submitted on BlackBoard Discussion Forum).
Students’ presentations of their solutions to Oral exercises (continued from June 24).
Students’ presentations of how they searched for the articles on June 24 (provide exact procedure on how you found articles; show examples of how you used “reversed search”). Explain how you selected articles and what did you learn from these articles.
Students continue working on writing critiques for Mathematics/Science Education Reading 2 (due on July 3).
Students continue working on mock grant proposal (due on July 1). |
| July 1 | Students’ presentations of most current parts of their critiques for Reading 1 (submitted on BlackBoard Discussion Forum).
Students’ presentations of mock grant proposals.
Informal discussion with Dr. Kosheleva on the work on the critique for Mathematics/Science Education Reading 2 (due on July 3). |
| July 3 ONLINE | Students finish critiques for Mathematics/Science Education Reading 2, and submit it into corresponding BlackBoard Forum. |
| July 8 | Students’ presentations of their critiques for Mathematics/Science Education Reading 2.
Students’ presentations of most current parts of their critiques for Reading 1 (submitted on BlackBoard Discussion Forum).
Informal discussion with Dr. Kosheleva on the selection of peer-reviewed article/chapter for the Final Critique. |
| July 10 | Students’ presentations of most current parts of their critiques for Reading 1 (submitted on BlackBoard Discussion Forum).
Informal discussion with Dr. Kosheleva on the progress of the selection of peer-reviewed article/chapter for the Final Critique.
Discussion of innovative/state-of-the-art development in math and science, and their applications to mathematics and science education. |
| July 15 | Students’ presentations of most current parts of their critiques for Reading 1 (submitted on BlackBoard Discussion Forum).
Informal discussion with Dr. Kosheleva on the progress of the selection of the article for the
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 17</td>
<td>Final Critique. Discussion of innovative/state-of-the-art development in math and science, and their applications to mathematics and science education. Students’ presentations of most current parts of their critiques for Reading 1 (submitted on BlackBoard Discussion Forum). Informal discussion with Dr. Kosheleva on the progress of the selection of the article for the Final Critique. Discussion of innovative/state-of-the-art development in math and science, and their applications to mathematics and science education.</td>
</tr>
<tr>
<td>July 19</td>
<td>Work on your individual Final Critique for this class. The Final Critique is due on August 1, 2014 (you should send completed Final Critique via Blackboard email to Dr. Kosheleva, subject: your name, Final Critique). Informal discussion with Dr. Kosheleva on the progress of the selection of the article for the Final Critique.</td>
</tr>
<tr>
<td>July 24</td>
<td>ONLINE Work on your individual Final Critique for this class. The Final Critique is due on August 1, 2014 (you should send completed Final Critique via Blackboard email to Dr. Kosheleva, subject: your name, Final Critique).</td>
</tr>
<tr>
<td>July 29</td>
<td>ONLINE Continue working on your individual Final Critique for this class.</td>
</tr>
<tr>
<td>August 1</td>
<td>ONLINE The Final Critique is due on August 1, 2014 (you should send completed Final Critique via Blackboard email to Dr. Kosheleva, subject: your name, Final Critique).</td>
</tr>
<tr>
<td>August 5</td>
<td>Final Exam Week meeting.</td>
</tr>
</tbody>
</table>

Deadline and Assignments Policy

- All on-line assignments are **due by 11 PM (Mountain Time)** on the assigned date (typically on Monday or Wednesday).
- Please ensure that you carefully read all instructions for each assignment, particularly the due dates and times. Reading instructions is your responsibility and you should not assume due dates or times.
- Keep electronic copies of all work submitted. In case your file submission is too big, please break it into several smaller files, and then submit these smaller files.
- Professional courtesy and a positive, collaborative attitude are required in all aspects of this course. I invite open, honest communication. However, all communication must be on a professional level, not personal.
- You are expected to produce quality work in this course. Spelling, grammatical errors, structure and presentation will influence your final grade and each grade on any project.
Class Participation

It is recommended that you check your UTEP blackboard course and discussion area daily to keep up. All the assignments are described in the Syllabus (posted on Blackboard). All your submissions should be done via Blackboard (most of them via Discussion Folders). Please, communicate with your professor via Blackboard email.

Please, DON'T WAIT UNTIL THE LAST MINUTE to complete and submit your assignments! There might be some technical glitches in the system: try to avoid them. The best way to avoid them is to start your assignments as soon as they are posted. **LATE SUBMISSIONS ARE NOT ALLOWED!**

You are welcome to use any resources to successfully complete your assignments. Outside resources should be quoted and a proper reference to the resource should be made. E-mail messages could be also sent to your UTEP email address, so you will want to check your UTEP e-mail every day.

What should you expect from me as the instructor?

- I will provide you clear instructions on class expectations.
- I will check my email at least four times per week and will answer back to you as soon as possible.
- I will keep you informed about your graded progress in the class at all times and will make time to discuss your needs.
- I will leave myself open to suggestions about improvement of the class and class related activities.
- I will do all I can to ensure your learning and success in this class.
- If any changes in the course are to be implemented, I will ensure that the class is notified in a timely manner.

Course Grading

Grade Distribution

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Possible (max) number of points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing/Presenting/reviewing "mock" grant proposal</td>
<td>20 points</td>
</tr>
<tr>
<td>Active Participation (please, see Participation rubric below)</td>
<td>16 points</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Critiques/presentations (8 points each)</td>
<td>16 points</td>
</tr>
<tr>
<td>Article search/presentations (7 points each)</td>
<td>28 points</td>
</tr>
<tr>
<td>Final Critique</td>
<td>20 points</td>
</tr>
<tr>
<td>Total</td>
<td>100 points</td>
</tr>
</tbody>
</table>

Grading Scale

90 - 100 = A (Excellent - 4.0)
80 - 89 = B (Good - 3.0)
70 - 79 = C (Average - 2.0)
60 - 69 = D (Passing - 1.0)
0 - 59 = F (Failure - 0.0)

You are encouraged to demonstrate **knowledge of content/ issues discussed in the class, critical thinking, and communication accuracy** while completing major course assignments.

Students with Disabilities

If you have or believe you have a disability, you may wish to identify yourself. You can do this by contacting the Disabled Student Services Office (DSSO) to show documentation of a disability or to register for testing and services. Students who have been designated as disabled must reactivate their standing with the DSSO yearly.

If you think that you may have a disability that will need accommodations and/or modifications, contact DSSO at 915-747-5148 or email: dss@utep.edu. You can also visit the DSSO website at www.utep.edu/dsso or the DSSO office in Room 106 East Union Building.
Rubrics

Short Reflection Rubric

<table>
<thead>
<tr>
<th>Category</th>
<th>Exceeds Standards</th>
<th>Meets Standards</th>
<th>Does not Meet Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Reflection</td>
<td>The piece is thoughtful, engaging, and clearly written. The piece shows careful consideration of the topic at hand. It responds directly to the question or prompts and makes meaningful connections with the readings and course content. The piece has been proofread.</td>
<td>Shows adequate reflection along with some level of thoughtfulness, and may or may not have responded directly to the question or prompt. It also contain grammatical or sentence structure errors that disrupt the flow of the narrative.</td>
<td>Does not adequately address the question or prompt, and shows limited thoughtfulness.</td>
</tr>
</tbody>
</table>

| Points | 5 | 4 - 3 | 2 – 1 |

Online Discussion Rubric

<table>
<thead>
<tr>
<th>Points</th>
<th>5</th>
<th>3 - 4</th>
<th>1 - 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis / Interpretation</td>
<td>The message uses sources, including outside as well as required reading. In addition, it demonstrates that the student has gained new understanding of the topic.</td>
<td>Some messages do analysis or interpretation well, but a significant number do not. This might be because the analysis was not done well or because it was not attempted (that is, was simply opinion).</td>
<td>Messages generally show little evidence of analysis, consisting instead of opinion and feelings and impressions.</td>
</tr>
<tr>
<td>Writing Skill</td>
<td>Sentences are clear and wording is unambiguous. Correct word choice, correct spelling, and correct grammar. Writing style can still be conversational rather than formal. The writing does not have to be flawless, but it will be better than average writing.</td>
<td>Ordinary, good writing. Lapses are regular and patterned, but do not undermine the communication or the persuasiveness of the argument.</td>
<td>Grammar, spelling, and/or word choice errors are frequent enough that the sense of the message is lost or muddled.</td>
</tr>
</tbody>
</table>
Participation

Messages contribute to ongoing conversations, as replies to questions or comments, or as new questions or comments. Messages that originate a thread usually generate responses. Student does not start a topic or pose a question and then abandon it.

Some messages contribute to ongoing conversations, but others are disconnected. If the student starts a new thread, sometimes there is follow-up but sometimes there isn't. Student tries to further the class discussion but is not successful a significant number of times. Or, student posts a significant (though still a minority) number of messages that are off-the-cuff and do not contribute substantively.

Messages are unconnected with what others are saying, as if there is no conversation. No replies to other messages. Student never answers someone else's question. When student asks a question, there's no acknowledgment to any responses.

<table>
<thead>
<tr>
<th>Participation</th>
<th>Description of performance</th>
<th>Points earned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Student exceptionally and consistently demonstrates the criterion throughout the semester</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Student proficiently and frequently demonstrates the criterion throughout the semester</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Student satisfactory and intermittently demonstrates the criterion throughout the semester</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Student inadequately and sporadically demonstrates the criterion throughout the semester</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Student does not demonstrates the criterion throughout the semester</td>
<td>0</td>
</tr>
</tbody>
</table>

Participation Rubric

Throughout the semester students are expected to:

- Participate fully in class activities and assignments. Understand your roles and responsibilities in acquiring Student Learning Outcomes for this class.
- Make insightful comments, informed by required reading and your own critical thinking. Demonstrate reflections on your readings. Communicate questions, comments and thoughts on readings.
- Treat class activities, group discussions as important components of the course, showing respect for fellow classmates and the course material.

Participation points will be assigned based on the extent to which students meet the above criteria.
Please, consult **Rubric for Written Reflections/Critiques** (below) for detailed description of assignment of points. The maximum points provided by the rubric are 20 points.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Strong (5-4 pts)</th>
<th>Acceptable Pass(3-2 pts)</th>
<th>Not Acceptable (1 pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation of Knowledge</td>
<td>Response demonstrates a professional command of the subject matter.</td>
<td>Response demonstrates above average command of subject matter.</td>
<td>Response explains some concepts, but overlooks critical details.</td>
</tr>
<tr>
<td></td>
<td>The scholarly conversation about the topic is analyzed and synthesized; response shows how ideas are related.</td>
<td>Analysis, synthesis, or relationships among ideas are explored.</td>
<td>Analysis, synthesis, or relationships among ideas are not provided.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Response does not address all the components of the question.</td>
<td>Response does not address all the components of the question.</td>
</tr>
<tr>
<td>Organization and development of Ideas and/or arguments</td>
<td>Major sections of response follow a logical sequence.</td>
<td>Major sections of response generally follow a logical sequence.</td>
<td>The structure of the response is unclear or relies on simplistic narrative.</td>
</tr>
<tr>
<td></td>
<td>Organization within sections is logical and consistent.</td>
<td>Organization within sections is basically logical.</td>
<td>Organization between paragraphs is difficult to determine.</td>
</tr>
<tr>
<td></td>
<td>If section headings are used, they are clear and logically placed.</td>
<td>Minimal responses to all components of the question.</td>
<td>If section headings are used, they are vague and/or, illogical.</td>
</tr>
<tr>
<td></td>
<td>Fully responds to each component of the questions.</td>
<td></td>
<td>Response does not address all the components of the question.</td>
</tr>
<tr>
<td>Writing Skills</td>
<td>Response demonstrates an excellent command of grammar, spelling, and mechanics and is free of distracting errors.</td>
<td>Response demonstrates a good command of grammar, spelling, and mechanics and has only a few distracting errors.</td>
<td>Response has consistent patterns of error in grammar, spelling, and mechanics that must be addressed.</td>
</tr>
<tr>
<td></td>
<td>Word use is appropriate and accurate.</td>
<td>Word use is generally appropriate and accurate. May have a few misused words.</td>
<td>There are frequent, noticeable errors or inappropriate uses of words.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In-text quotations of other works comprise the majority of the paper.</td>
</tr>
</tbody>
</table>
Citations

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-text citations clearly and appropriately identify every author whose ideas are referred to, discussed, summarized, paraphrased, or quoted.</td>
<td>In-text citations identify most authors whose ideas are referred to, discussed, summarized, paraphrased, or quoted. One or two citations are vague or inaccurate.</td>
<td>In-text citations are generally inconsistent, incorrectly formatted, unclear, misplaced, or missing.</td>
</tr>
</tbody>
</table>

Copyright Notice

Many of the materials that are posted within this course are protected by copyright law. These materials are only for the use of students enrolled in this course and only for the purpose of this course. They may not be further retained or disseminated.

The course instructor reserves the right to adjust the course syllabus or change assignments as needed. Remember that our course syllabus and class schedule are living documents and can change!