Course Information

MTED 5324
Authentic Assessment in Mathematics Classroom
3 Credit Hours
Hybrid Class
Tuesdays 5:30-8:20 pm
Education 402

Instructor Contact Information:

Dr. Olga Kosheleva, Department of Teacher Education
Office: Educ. 607
Phone: 747-7588
E-mail: olgak@utep.edu
Office Hours: Tuesdays and Thursdays, 4:30 pm – 5:30 pm (Educ. 402), 8:20 pm – 9:30 pm (Educ. 402) or by appointment.

Required Text:

(1) “Uncovering Student Thinking in Mathematics, 25 Formative Assessment Probes for the Secondary Classroom”, Cheryl Rose Tobey (Editor), Leslie Minton (Editor), Carolyn B. Arline (Editor) ISBN 1-4129-4037—0 or 978-1-4129-4037-5

(2) Additional readings are provided below and some of them will be provided on Blackboard

Recommended Readings and other Instructional Resources

- This website includes resources for revised Texas Essential Knowledge and Skills (TEKS) for all grade levels (Mathematics).

 http://tea.texas.gov/Curriculum_and_Instructional_Programs/Subject_Areas/Mathematics/Resources_for_the_Revised_Kindergarten_%E2%80%93_Grade_8_Mathematics_TEKS/

 http://www.projectsharetexas.org/resource/revised-mathematics-tekside-side-tekside-comparison

 http://ritter.tea.state.tx.us/rules/tac/chapter111/index.html

- Texas College Readiness Standards

 http://www.thecb.state.tx.us/collegereadiness/CRS.pdf
• Common Core Standards
 http://www.corestandards.org/

• National Council for Teachers of Mathematics (NCTM)
 http://www.nctm.org/
 http://standardstrial.nctm.org/triallogin.asp

NCTM Curriculum Focal Points
 https://www2.bc.edu/solomon-friedberg/mt190/nctm-focal-points.pdf

• This website provides a wide selection of virtual manipulatives for teaching mathematics:
 http://nlvm.usu.edu/en/nav/vlibrary.html

• Book "Measuring What Counts: A Conceptual Guide for Mathematics Assessment"
 http://www.nap.edu/catalog.php?record_id=2235

• Book "Measuring Up: Prototypes for Mathematics Assessment"
 http://www.nap.edu/catalog.php?record_id=2071

• Book "Knowing What Students Know: The Science and Design of Educational Assessment"
 http://www.nap.edu/catalog.php?record_id=10019

• Book "How Students Learn: Mathematics in the Classroom". You can read it online at
 http://www.nap.edu/catalog.php?record_id=11101

• Book "Adding It Up: Helping Children Learn Mathematics". You can read it online at
 http://books.nap.edu/books/0309069955/html/

• Critical Issues in Assessment
 http://www.ncrel.org/sdrs/areas/as0cont.htm
 http://www.ncrel.org/sdrs/areas/issues/methods/assment/as800.htm
 http://www.ncrel.org/sdrs/areas/issues/methods/assment/as700.htm
 http://www.ncrel.org/sdrs/areas/issues/methods/assment/as500.htm
 http://www.ncrel.org/sdrs/areas/issues/methods/assment/as600.htm

• Critical Issue: Providing Hands-On, Minds-On, and Authentic Learning Experiences in Mathematics
 http://www.ncrel.org/sdrs/areas/issues/content/ntareas/math/ma300.htm

• The Trends in International Mathematics and Science Study - is a world-wide assessment and research project
 that conducts mathematics and science assessments to 4th and 8th grade students from more than 60 counties including
 the United States every four years.
Course Description and Purpose

An in-depth examination of assessment techniques and approaches that could be effectively used in mathematics classroom will be provided in this course. Additionally, in this course students will be involved in active research related to understanding of current issues, practices and directions in mathematics curriculum and assessments approaches with the purpose of identifying and analyzing topics of importance in current mathematical education research.

Following the NCTM Assessment Standards document, “assessment is defined as the process of gathering evidence about a student's knowledge of, ability to use, and disposition toward, mathematics and of making inferences from that evidence for a variety of purposes.” “The focus on gathering evidence and making inferences emphasizes that assessment is a process of describing what mathematics students know and can do.”

The NCTM assessment principle explains that the assessment practices should provide feedback for teachers and students about the learning of important mathematics concepts.

The above figure describes the diagnostic continuum of assessment. All the components of this continuum will be studied in this course.

The scope and form of assessment depend upon the purpose of assessment. Assessments should not be only summative measures, but both formal and informal assessment, as well as formative assessments approaches should also be used throughout the course of study. This formative assessment should be a continuous process. This formative assessment will provide information that will guide future instruction.

As students are documenting their thinking on tasks as they are learning, the feedback provided can help them become reflective learners. Teaching practices that emphasize self-assessment are very important. They are helping students to become more metacognitive about their own thinking and learning. Providing support for
self-assessment is an important component of effective teaching. The goal is to help students understand the major purpose of mathematical activities. This could be accomplished through effective questioning, discussions, students performing experiments, making hypothesis, etc. Students' self-assessment should be developed as new habits of mind that would allow them to monitor their own progress.

The instruction should begin with close attention to students' ideas, findings, explorations, errors, etc. All these artifacts will provide the foundation on which learning will occur. This constitutes learner-centered environment. It involves paying attention to students' background, and cultural values, as well, as to their abilities. Learning tasks should be on appropriate cognitive level, challenging but at the same time manageable. A classroom should be also knowledge-centered, that is teacher should focus on subject matter, understanding, curriculum and learning goals.

Important questions to consider:

- What is important for students to know and be able to do?
- What are the core concepts? What are concrete tasks/activities that allow students to master these concepts effectively?
- How will we know that students achieved mastery of these concepts?

Assessment is a major and essential feature of both learner-centered and knowledge-centered classroom environments. Once the knowledge that has to be learned is well-defined, assessment is required to determine and monitor student progress, to understand the type of thinking students are using, to design further instruction in such a way that will help students to enhance, improve and revise their thinking.

Authentic assessment involves students in tasks that require the application of knowledge and skills related to real-life situations. We will discuss strategies for creating this type of assessment.

One important example of such strategies is diagnostic assessment strategies related to mathematics formative assessment probes. In designing the probe teacher identifies specific areas of difficulty in student's mathematical understanding (through research literature). A probe typically includes a question and a series of responses. The question is specifically focused on some prior misconception or not sufficient understanding displayed by a student. It is important to differentiate between "silly mistake" and a more fundamental, deep-rooted misunderstanding. After that teacher will use results from cognitive research to construct next steps in instruction. Then a teacher will implement the new instructional activity, and determine the impact on learning by asking additional questions.

We will look at different types of understanding and misunderstanding as related to conceptual and procedural knowledge. The relationship between understanding concepts and being proficient with procedure is complex. In this class we will read articles and explore and study current research related to this complex relationship.

Other topics that will be discussed are rubrics, performance indicators and grading.

Each class session will consist of a brief lecture and/or students’ interactive discussion/presentation, and problem solving activities. The discussion will focus on how the lessons exemplify the given standard, on how to assess the effectiveness of the lesson, and on modifications and improvements. You will be required to take notes during each class session.

During online sessions you will be asked to read mathematics education papers and chapters from the book, write reflections and participate in online discussion (all these activities will be conducted via Blackboard).

College’s Conceptual Theme
The course goals are aligned with the College of Education’s mission and vision addressing the culture of inquiry through a sustained, comprehensive, and coherent program of study with special emphasis and support for student learning and development within linguistically and culturally diverse settings. The course emphasizes the building of a knowledge base, generation and dissemination of research, and its applications. The MTED 5324 course provides the fundamental bases for allowing students to continue their journey of inquiry, reflection, application of basic educational research concepts and their applications to mathematics education.

Student Learning Outcomes

The course’s learning outcomes will require the student to acquire throughout the semester new knowledge and skills and build upon them. The following table provides a list of the most relevant student learning outcomes for the course. The student learning outcomes are aligned with the NCTM Assessment Standards and Master Mathematics Teacher Standard.

NCTM Assessment Standards

The Mathematics Standard

Assessment should reflect the mathematics that all students need to know and be able to do.

The Learning Standard

Assessment should enhance mathematics learning.

The Equity Standard

Assessment should promote equity.

The Openness Standard

Assessment should be an open process.

The Inferences Standard

Assessment should promote valid inferences about mathematics learning.

The Coherence Standard

Assessment should be a coherent process.

MMT standards (selection)

Other MMT standards/competencies can be found at

Domain I

Competency 004

The Master Mathematics Teacher 4-8 plans and designs effective instruction and assessment based on knowledge of how all students, including students who are at-risk, learn and develop number concepts, skills, and procedures.

Competency 005

The Master Mathematics Teacher 4-8 implements a variety of instruction and assessment techniques to guide, evaluate, and improve students’ learning of number concepts, skills, and procedures.

Domain II
Competency 011
The Master Mathematics Teacher 4-8 plans and designs effective instruction and assessment based on knowledge of how all students, including students who are at-risk, learn and develop patterns and algebra concepts, skills, and procedures.

Competency 012
The Master Mathematics Teacher 4-8 implements a variety of instruction and assessment techniques to guide, evaluate, and improve students’ learning of patterns and algebra concepts, skills, and procedures.

Domain III
Competency 017
The Master Mathematics Teacher 4-8 plans and designs effective instruction and assessment based on knowledge of how all students, including students who are at-risk, learn and develop geometry and measurement concepts, skills, and procedures.

Competency 018
The Master Mathematics Teacher 4-8 implements a variety of instruction and assessment techniques to guide, evaluate, and improve students’ learning of geometry and measurement concepts, skills, and procedures.

Domain IV
Competency 022
The Master Mathematics Teacher 4-8 plans and designs effective instruction and assessment based on knowledge of how all students, including students who are at-risk, learn and develop probability and statistics concepts, skills, and procedures.

Competency 023
The Master Mathematics Teacher 4-8 implements a variety of instruction and assessment techniques to guide, evaluate, and improve students’ learning of probability and statistics concepts, skills, and procedures.

Table 1. Student learning outcomes and assessment

<table>
<thead>
<tr>
<th>Student Learning Outcomes</th>
<th>Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>By the end of course, the successful student will be able to:</td>
<td>To evaluate these outcomes, the faculty member will use the following assessment:</td>
</tr>
<tr>
<td>1. Develop an understanding of current issues, practices and directions in mathematics curriculum and assessments approaches and the ability to inquire into these.</td>
<td>a. Class discussions and</td>
</tr>
<tr>
<td></td>
<td>b. Tests/Surveys.</td>
</tr>
<tr>
<td>2. Develop knowledge and skills in educational research related to assessment in mathematics classroom. Identify and analyze topics of importance in current mathematical education research related to assessment.</td>
<td>a. Class discussions/presentations</td>
</tr>
<tr>
<td></td>
<td>b. Tests/Surveys</td>
</tr>
<tr>
<td></td>
<td>c. Graded Electronic Databases searches.</td>
</tr>
<tr>
<td>3. Increase their confidence and expertise to teach mathematics. Improve their ability to manage and assess their pupils’ mathematics learning. Discover innovative methods of instruction to increase effectiveness and pupils’ engagement, learning, and thinking.</td>
<td>a. Class discussions/presentations</td>
</tr>
<tr>
<td></td>
<td>b. Tests/Surveys</td>
</tr>
<tr>
<td>4. Improve their capacity to think reflectively and creatively about their teaching of mathematics.</td>
<td>a. Class discussions/presentations</td>
</tr>
<tr>
<td></td>
<td>b. Tests/Surveys</td>
</tr>
<tr>
<td>5. Increase their capacity to become an agent of change in the field of mathematics education.</td>
<td>a. Tests/Surveys.</td>
</tr>
</tbody>
</table>
Course Assignments

1. **Assigned Readings/Reflections/Critique/Presentations.** The student will be assigned readings each week (available on Blackboard). Specific instructions will be provided on Blackboard. Each week one of the groups will be asked to present their reflections and critique during class session.

2. **Tests/Surveys.** The student will earn a satisfactory grade on several exams. The format will include multiple choice questions, computational problems, and conceptual questions. These tests will be given in face-to-face class sessions (20-30 minutes).

3. **Course project.** The student will be able to work on an individual/group research project which will involve authentic assessment task development related to mathematics teaching on the grade level corresponding to your degree. The final product will be a research article containing the following components:
 1. Introduction
 2. Research Literature (at least 5 different citations).
 3. Methodology for creating authentic assessment task.
 4. Description of the task and results (if applicable).
 5. Conclusions and Recommendations
 6. References

Follow APA style in writing your proposal. An example follows at this site http://owl.english.purdue.edu/owl/section/2/10/

Evaluation and Grading

Your grade will be determined by the level of you fulfilling the following requirements. There are five benchmarks for this course. Your success in fulfilling these benchmarks will determine your grade for the course:

Grade "A": Student meets all the requirements, completes all assignments, and turns in all assignments (including tests) on time. The average grade for assignments (including all extra credit) and tests is A.

Grade "B": Student meets all the requirements, but does not complete all assignments, submits some assignments after the due date, has excessive absences. The average grade for assignments (including all extra credit) and tests is B.

Grade "C": Student does not meet all of the benchmarks, does not complete all assignments, submits most assignments after the due date, and has excessive absences. The average grade for assignments (including all extra credit) and tests is C.

Requirements for course success:

1. You must become expert in working with UTEP Library electronic database.
2. You must maintain a portfolio, where all your notes, home works, etc are kept. All handwritten notes should be written in clear, understandable handwriting style.
3. You must become knowledgeable and proficient in working with Blackboard.
4. You will work as a cooperative member of the community of learners that comprises this class.
5. In order to obtain a grade based on the criteria below, all assignments must be completed before the semester is over.
Grade Distribution
Active Participation/Positive Attitude 10%
Reflections/Critiques 20%
Presentations 20%
Course Project/Presentation 30%
Exams 20%
100%

Grade Assignment (University guidelines)

90-99.9 A
80--89.9 B
70-79.9 C
60-69.9 D
<60 F

Course Instructional Methods

The instructional methods relevant to the efficient delivery of the material will focus on the following educational procedures:
1. Introduction and presentation of new material via instructor-led presentations and hands-on explorations
2. Ongoing student-led discussions on the Blackboard
3. Student-led discussion and presentation of summaries of assigned readings and final projects
4. Student-led question and answer sessions related to readings
5. Instructor-led summary and discussion of presented material or evaluation of material taught.

Class Policies / Statements

Class participation/Attendance. You are expected to attend class and participate in discussions and activities. Each attendance and participation will count towards final grade. It will be taken each meeting using a sign-in sheet (which is your responsibility to make sure you sign). Your active participation and positive attitude towards learning in each class session is vital to your learning as well as to the learning of other students in the class. The instructor may count late arrival, early departure, or blatant nonparticipation as a half-absence or even a full absence, depending on what is missed. We meet only once a week and most of the activities in this course involve collaborative learning, group activities or discussions. Students may miss a total of two classes. I hold the right to drop a student from a course after two absences.

Workload Policy. The class is a 3 credit course. This indicates that there should be at least a 3 contact hours per week with a minimum of 6 additional hours of work outside of class per week for the student to receive an average grade in the course.

Course Preparation. Student is expected to come prepared before each class meeting. The student is expected to read the assigned chapter content and material and complete any class or homework assignments, if any.

Other policies. No ringing cell phones or beepers are permitted in class. It is responsibility of any student desiring to drop the course to turn in necessary drop forms. The instructor will not drop students who are no longer attending the class. The instructor will not drop a student after the last day to drop. You are responsible for your own record. The instructor can drop any student any time a student violates the written rules/requirements for remaining in good standing in the course.
Students with Disabilities

If you have or believe you have a disability, you may wish to self-identify. You can do so by providing documentation to the Office of disabled Student Services located in Union E Room 203. Students who have been designated as disabled must reactivate their standing with the Office of Disabled Student Services on a yearly basis. Failure to report to this office will place a student on the inactive list and nullify benefits received. If you have a condition which may affect your ability to exit safely from the premises in an emergency or which may cause an emergency during class, you are encouraged to discuss this in confidence with the instructor and/or the director of Disabled Student Services. You may call 747-5148 for general information about the Americans with Disabilities Act (ADA).

Academic Integrity

Students are expected to uphold the highest standards of academic integrity. Any form of scholastic dishonesty is an affront to the pursuit of knowledge and jeopardizes the quality of the degree awarded to all graduates of UTEP. Any student who commits an act of scholastic dishonesty is subject to discipline. Scholastic dishonesty includes, but is not limited to cheating, plagiarism, collusion, the submission for credit of any work or materials that are not attributable in whole or in part to another person, taking an examination for another person, any act designed to give unfair advantage to a student or the attempt to commit such acts. Proven violations of the detailed regulations, as printed in the Handbook of Operating Procedures (HOP) and available in the Office of the Dean of Students, may result in sanctions ranging from disciplinary probation, to failing grades on the work in question, to failing grades in the course, to suspension or dismissal among others.

Participants are expected to abide by the UTEP policies concerning academic honesty. Specifically:

Academic dishonesty is prohibited and is considered a violation of the UTEP Handbook of Operating Procedures. It includes, but is not limited to, cheating, plagiarism, and collusion. Cheating may involve copying from or providing information to another student, possessing unauthorized materials during a test, or falsifying research data on laboratory reports. Plagiarism occurs when someone intentionally or knowingly represents the words or ideas of another person's as ones' own. And, collusion involves collaborating with another person to commit any academically dishonest act. Any act of academic dishonesty attempted by a UTEP student is unacceptable and will not be tolerated. Violations will be taken seriously and will be referred to the Dean of Students Office for possible disciplinary action. Students may be suspended or expelled from UTEP for such actions.

(Source: http://cetalweb.utep.edu/sun/cetal/events/docs/Academic_Dishonesty.htm).

Table 2. Tentative Course Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>ONLINE Introduction: course content. Presentation of materials posted on Blackboard. Please, follow assignment guidelines emailed to you via UTEP email.</td>
</tr>
<tr>
<td>Week 2</td>
<td>F2F Presentation of UTEP Library electronic databases. Presentation of materials posted on Blackboard. Pre-Test. Pre-survey. Please, follow assignment guidelines posted in the Blackboard Topic "Week 2" (if available).</td>
</tr>
<tr>
<td>Week 3, Feb. 5, ONLINE</td>
<td>Please, follow assignment guidelines emailed to students via BlackBoard email (read chapters posted in the following Discussion Folders in the Whole Class Discussion: “NCTM standards,” and “Assessment examples.”)</td>
</tr>
<tr>
<td>Week 4</td>
<td>Hands-on Activities, presentations. Explorations on mathematical probes. Specific instructions (if available) will be posted in BB, Discussion Forum “Week 4”.</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Feb. 12</td>
<td></td>
</tr>
<tr>
<td>F2F</td>
<td></td>
</tr>
<tr>
<td>Week 5</td>
<td>Hands-on Activities, presentations. Explorations on mathematical probes Specific instructions (if available) will be posted in BB, Discussion Forum “Week 5”.</td>
</tr>
<tr>
<td>Feb. 19</td>
<td></td>
</tr>
<tr>
<td>F2F</td>
<td></td>
</tr>
<tr>
<td>Week 6</td>
<td>Hands-on Activities, presentations. Explorations on mathematical probes Specific instructions (if available) will be posted in BB, Discussion Forum “Week 6”.</td>
</tr>
<tr>
<td>Feb. 26</td>
<td></td>
</tr>
<tr>
<td>F2F</td>
<td></td>
</tr>
<tr>
<td>Week 7</td>
<td>Hands-on Activities, presentations. Explorations on mathematical probes Specific instructions (if available) will be posted in BB, Discussion Forum “Week 7”.</td>
</tr>
<tr>
<td>March 5</td>
<td></td>
</tr>
<tr>
<td>ONLINE</td>
<td></td>
</tr>
<tr>
<td>Spring Break</td>
<td>No classes</td>
</tr>
<tr>
<td>Week 8</td>
<td>Hands-on Activities, presentations. Explorations on mathematical probes Specific instructions (if available) will be posted in BB, Discussion Forum “Week 8”.</td>
</tr>
<tr>
<td>March 19</td>
<td></td>
</tr>
<tr>
<td>F2F</td>
<td></td>
</tr>
<tr>
<td>Week 9</td>
<td>Specific instructions (if available) will be posted in BB, Discussion Forum “Week 9”.</td>
</tr>
<tr>
<td>March 26</td>
<td></td>
</tr>
<tr>
<td>ONLINE</td>
<td></td>
</tr>
<tr>
<td>Week 10</td>
<td>Hands-on Activities, presentations. Explorations on mathematical probes Specific instructions (if available) will be posted in BB, Discussion Forum “Week 10”.</td>
</tr>
<tr>
<td>April 2</td>
<td></td>
</tr>
<tr>
<td>F2F</td>
<td></td>
</tr>
<tr>
<td>Week 11</td>
<td>Specific instructions (if available) will be posted in BB, Discussion Forum “Week 11”.</td>
</tr>
<tr>
<td>April 9</td>
<td></td>
</tr>
<tr>
<td>ONLINE</td>
<td></td>
</tr>
<tr>
<td>Week 12</td>
<td>Hands-on Activities, presentations. Explorations on mathematical probes Specific instructions (if available) will be posted in BB, Discussion Forum “Week 12”.</td>
</tr>
<tr>
<td>April 16</td>
<td></td>
</tr>
<tr>
<td>F2F</td>
<td></td>
</tr>
<tr>
<td>Week 13</td>
<td>Specific instructions (if available) will be posted in BB, Discussion Forum “Week 13”.</td>
</tr>
<tr>
<td>April 23</td>
<td></td>
</tr>
<tr>
<td>ONLINE</td>
<td></td>
</tr>
</tbody>
</table>
Week 14
April 30 F2F
Presentations. Specific instructions (if available) will be posted in BB, Discussion Forum “Week 14”.

Week 15
May 7 F2F

Final Exam Week
May 14 F2F
Presentations.

Final Word
I reserve the right to adjust the course syllabus or change assignments as needed. Remember that our course syllabus and class schedule are living documents and can change.

Appendices: Relevant Rubrics

Grading Rubric for Online Discussion

<table>
<thead>
<tr>
<th>Points</th>
<th>5</th>
<th>3-4</th>
<th>1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis / Interpretation</td>
<td>The message uses sources, including outside as well as required reading. In addition, it demonstrates that the student has gained new understanding of the topic.</td>
<td>Some messages do analysis or interpretation well, but a significant number do not. This might be because the analysis was not done well or because it was not attempted (that is, was simply opinion).</td>
<td>Messages generally show little evidence of analysis, consisting instead of opinion and feelings and impressions.</td>
</tr>
<tr>
<td>Writing Skill</td>
<td>Sentences are clear and wording is unambiguous. Correct word choice, correct spelling, and correct grammar. Writing style can still be conversational rather than formal. The writing does not have to be flawless, but it will be better than average writing.</td>
<td>Ordinary, good writing. Lapses are regular and patterned, but do not undermine the communication or the persuasiveness of the argument.</td>
<td>Grammar, spelling, and/or word choice errors are frequent enough that the sense of the message is lost or muddled.</td>
</tr>
<tr>
<td>Participation</td>
<td>Messages contribute to ongoing conversations, as replies to questions or comments, or as new questions or comments. Messages that originate a thread usually generate responses. Student does not start a topic or pose a question and then abandon it.</td>
<td>Some messages contribute to ongoing conversations, but others are disconnected. If the student starts a new thread, sometimes there is follow-up but sometimes there isn't. Student tries to further the class discussion but is not successful a significant number of times. Or, student posts a significant (though still a minority) number of messages that are off-the-cuff and do not contribute substantively.</td>
<td>Messages are unconnected with what others are saying, as if there is no conversation. No replies to other messages. Student never answers someone else's question. When student asks a question, there's no acknowledgment to any responses.</td>
</tr>
</tbody>
</table>
Grading Rubric for Short Reflection

<table>
<thead>
<tr>
<th>Category</th>
<th>Exceeds Standards</th>
<th>Meets Standards</th>
<th>Does not Meet Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Short Reflection</td>
<td>The piece is thoughtful, engaging, and clearly written. The piece shows careful</td>
<td>Shows adequate reflection along with some level of thoughtfulness, and may or may</td>
<td>Does not adequately address the question or prompt, and shows limited thoughtfulness.</td>
</tr>
<tr>
<td></td>
<td>consideration of the topic at hand. It responds directly to the question or prompts</td>
<td>not have responded directly to the question or prompt. It also contain grammatical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and makes meaningful connections with the readings and course content. The piece</td>
<td>or sentence structure errors that disrupt the flow of the narrative.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>has been proofread.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Points</td>
<td>(10-8)</td>
<td>(7-4)</td>
<td>(3-1)</td>
</tr>
</tbody>
</table>

Grading Rubric for Probe

<table>
<thead>
<tr>
<th>Category</th>
<th>Exceeds Standards</th>
<th>Meets Standards</th>
<th>Does not Meet Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Reflection Piece</td>
<td>The probe is clearly explained and all the elements of the probe are present.</td>
<td>The probe is explained, but one or two elements of the probe are either absent or</td>
<td>Does not adequately explain several elements of the probe.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>presented with very little explanation.</td>
<td></td>
</tr>
<tr>
<td>Points</td>
<td>(5-4)</td>
<td>(3-2)</td>
<td>(1-0)</td>
</tr>
</tbody>
</table>

Grading Rubric for Presentation

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Good (10-8 pts)</th>
<th>Fair (7-4 pts)</th>
<th>Poor (3-1 pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of Content and Summary</td>
<td>Solid knowledge and understanding of the topic to be presented is demonstrated. The presentation is clear and understandable.</td>
<td>Good knowledge and understanding of the topic to be presented is demonstrated. The presentation is clear and understandable, but some important points are not addressed.</td>
<td>Weak knowledge and understanding of the topic to be presented is demonstrated. The presentation is unclear.</td>
</tr>
<tr>
<td>Critical Thinking and Argumentation</td>
<td>Strengths and weaknesses that are central to the key points of the article are addressed. The discussion of strengths and weaknesses take up the majority of the assignment.</td>
<td>Strengths and weaknesses that are peripheral to the article are addressed. The discussion of strengths and weaknesses take up the majority of the assignment.</td>
<td>Strengths and weaknesses are addressed peripherally or not at all. The discussion of strengths and weaknesses take up only a small part of the assignment.</td>
</tr>
<tr>
<td>Organization and Communication Accuracy</td>
<td>The presentation is well organized, has a very clear intro, body and conclusion. The purpose of the presentation is clear from the very beginning. There are no grammatical errors or typos. APA and page length requirements</td>
<td>The presentation is organized, has an intro, body and conclusion. The purpose of the paper becomes clear within the paper. There are few grammatical errors or typos. APA and page length</td>
<td>The presentation is not well organized, has an unclear or non-existent intro, body and conclusion. The purpose of the paper is unclear. There are many grammatical errors and/or typos. APA and page length</td>
</tr>
</tbody>
</table>

| | | | |
Participation Rubric

Throughout the semester students are expected to:

- Be present (in mind and body) and be well prepared for class.
- Participate fully in class activities and assignments – take an active part in the work of small and large group; participate in discussions and attend class face-to-face sessions. Understand your roles and responsibilities in acquiring Student Learning Outcomes for this class.
- Make insightful comments, informed by required reading and your own critical thinking. Demonstrate reflections on your readings. Come to class with questions, comments and thoughts on readings.
- Treat class activities, group discussions as important components of the course, showing respect for fellow classmates and the course material.

Participation points will be assigned based on the extent to which students meet the above criteria.

<table>
<thead>
<tr>
<th>Description of performance</th>
<th>Points earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student exceptionally and consistently demonstrates the criterion throughout the semester</td>
<td>4</td>
</tr>
<tr>
<td>Student proficiently and frequently demonstrates the criterion throughout the semester</td>
<td>3</td>
</tr>
<tr>
<td>Student satisfactory and intermittently demonstrates the criterion throughout the semester</td>
<td>2</td>
</tr>
<tr>
<td>Student inadequately and sporadically demonstrates the criterion throughout the semester</td>
<td>1</td>
</tr>
<tr>
<td>Student does not demonstrates the criterion throughout the semester</td>
<td>0</td>
</tr>
</tbody>
</table>