Course number and name:
EL 4395 – Design Capstone I: Definition & Exploration

Course Description: This course is the first semester of a two-semester capstone design course in engineering leadership. Particular focus is on defining (specifications) and exploring (ideation) various project designs in which engineering leadership skills are applied to build a cohesive team and to successfully execute an effective company engineering/research project.

Course Credit: 3
Contact Hours: 8

Prerequisites: MATH 2313, CE 2338, EL 3304 (or as determined by Catalog of Student)
Students must have a 2.5 GPA or better in engineering coursework.

Cross/Co-listed with:

Instructor/Course Coordinator: David Novick

Textbook(s) & required materials:
- *Leadership – Theory & Practice* by Northouse
- *Designing Your Life* by Evans and Burnett

Selected readings to be assigned from the professor as well as the industry mentor

Course Learning Outcomes:
On completion of the course, the student will be able:

1) To demonstrate knowledge of the general scope and feasibility of various design constraints and design options to solve a defined problem
 1. To demonstrate that the design has met objectives by considering various alternatives and meeting predefined constraints
2) To understand both the impact of engineering solutions in a global and societal context and one’s professional and ethical responsibility
3) To consider multi-disciplinary projects and produce prototypes
4) To consider, develop and apply key aspects of individual and team leadership
5) To explain business acumen related to costs, capital expenditures, and taxation

Relationship to Program Outcomes: Recognize need for additional knowledge; recognize leadership issues, recognize leadership built on character, capacity, and competence

Grading Scheme:
70% team project performance: Weekly SCRUM reports (10%), team presentations (20%), mentor evaluation (15%), design notebook (25%). Within each team, the project score will be adjusted individually based on team-member peer evaluation of contribution.

30% individual performance: Homework (5%), quizzes (12.5%), exam (12.5%).
<table>
<thead>
<tr>
<th>Sample Topics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Understanding real world problems (decisions and tradeoffs; documentation and reporting; project scheduling and budgeting; vendor relations; sponsor input and change of scope; resource limitations; ethics and safety; confidentiality)</td>
</tr>
<tr>
<td>2. Leadership and team building (division of work and delegation; authority, responsibility and accountability; resolution of personal conflicts; utilization of a variety of talents and skills; personnel evaluation and feedback)</td>
</tr>
<tr>
<td>3. Engineering design process (proposal, negotiation, contract, execution and evaluation; feasibility studies; preliminary design; detailed design; revision; release; field testing; production; salvage)</td>
</tr>
<tr>
<td>4. Application of course material (recognize applications and limitations; balance analysis, experimentation, computation, simulation, and optimization; assess models using prediction and other validation)</td>
</tr>
<tr>
<td>5. Gain real world insights (develop career goals; learn about patents and notebook recording; get acquainted with engineers and companies; sense the complexity, difficulty and time involved in solving real problems)</td>
</tr>
<tr>
<td>6. Business acumen (responsibility accounting and cost control through standard costs, relevant costing in nonroutine decisions, evaluating capital expenditure projects, how taxes affect business decisions)</td>
</tr>
</tbody>
</table>