Fall 2023
GEOL 4373
GEOL 5315/6315

Groundwater Contamination and Reclamation

INSTRUCTORS
Dr. Lin Ma
Department of Earth, Environmental and Resource Sciences
University of Texas at El Paso

Dr. Mark Engle
Department of Earth, Environmental and Resource Sciences
University of Texas at El Paso

Office : Geology Building 219
Tel : 915 747-5218
E-mail: lma@utep.edu

Office : Geology Building 302A
Tel : 915-747-5503
E-mail: maengle@utep.edu

MEETING PATTERN & LOCATION
TR, 9:00-10:20 am (3 credits), Geology Building 302
Office hours: M 9-10 am (for both Dr. Ma and Dr. Engle) or by email appointments

COURSE DESCRIPTION
The overall objective of this course is to introduce basic principles of contamination fate and transport in groundwater. The course will emphasize mass transport and contaminant transport in confined and unconfined aquifers and the vadose zone, and the use of conceptual and analytical models
to simulate fate and transport in saturated and unsaturated groundwater conditions. We will also include the application of remediation and reclamation methods for various types of contaminants.

COURSE OBJECTIVES

1) Learn the concepts in contaminant hydrogeology including transport phenomena and remediation.
2) Learn the Darcy’s law, which describes how water flows through a saturated porous media.
3) Understand the main equations of flow and mass (contaminants), which are conservation statements for steady-state and transient conditions.
4) Learn the general principles of flow and transport in unsaturated zone, including Richard’s equation.
5) Discuss the characterization and remediation of contaminated sites for groundwater and vadose zone systems, the superfund law, preliminary site assessment, site investigation techniques, and remediation technologies, and monitoring requirements.

REQUIRED TEXTBOOK

RECOMMENDED READINGS

If you have not taken course GEOL 4383, General Hydrogeology, you should review basic principles of the subject in the recommended readings above.

TENTATIVE SCHEDULE OF TOPICS – subject to change!

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Textbook chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction, Groundwater contamination, Review of hydrogeology</td>
<td>Ch. 1</td>
</tr>
<tr>
<td>2</td>
<td>Mass transport in saturated media</td>
<td>Ch. 1</td>
</tr>
<tr>
<td></td>
<td>Darcy’s Law, Permeability, Porosity</td>
<td>Ch. 1</td>
</tr>
<tr>
<td>3</td>
<td>Bernoulli’s equation and hydraulic head; common aquifer materials and properties</td>
<td>Ch. 1</td>
</tr>
<tr>
<td>4</td>
<td>Transmissivity, Storativity, Groundwater continuity equation</td>
<td>Ch. 1</td>
</tr>
<tr>
<td>5</td>
<td>Mass transport in saturated media: advection, diffusion</td>
<td>Ch. 2</td>
</tr>
<tr>
<td>6</td>
<td>Dispersion and the advection-dispersion equation</td>
<td>Ch. 2</td>
</tr>
<tr>
<td>7</td>
<td>Fate of solutes: sorption and isotherms</td>
<td>Ch. 3</td>
</tr>
<tr>
<td>8</td>
<td>Fate of solutes: sorption, transformation, retardation, and attenuation</td>
<td>Ch. 3</td>
</tr>
<tr>
<td>9</td>
<td>Introduction to numerical groundwater modeling w/ hands-on tutorial</td>
<td>Handout</td>
</tr>
<tr>
<td>10</td>
<td>MODFLOW continued/Vadose zone hydrology - concepts</td>
<td>Ch. 4</td>
</tr>
<tr>
<td>11</td>
<td>Water retention curves; Richard’s equation; Modeling water flow with HYDRUS 1-D</td>
<td>Ch. 4/Handout</td>
</tr>
<tr>
<td>12</td>
<td>Intro to solute transport in the vadose zone</td>
<td>Ch. 4/Handout</td>
</tr>
<tr>
<td>13</td>
<td>Unsaturated zone solute transport/Multiphase Flow</td>
<td>Ch. 4/5</td>
</tr>
</tbody>
</table>
Aqueous geochemistry and sources of solutes/ Organic compounds in groundwater

Grading: Exams (40%: one mid-term and one final exam/class project); Homework (40%); Attendance or active class participation (20%);

Grading scale:
A: 100-90%; B: 89-80%; C: 79-70%, D: 69-60%; F: below 60%.

Students with Disabilities
If you have a disability or if you are experiencing learning difficulties, please contact the Center for Accommodations and Support Services (CASS) or visit their portal (cassportal.utep.edu). You may contact them Monday through Friday 8:00a.m.-5:00p.m. Phone:(915) 747-5148. Union Building East Room 106 cass@utep.edu. They provide any necessary accommodations. You should also meet with me in order to facilitate your needs. You are expected to provide documentation of your disability in order to make special arrangements in this class.

Academic Misconduct
Academic dishonesty will be not tolerated in this class (please refer to the student conduct code handbook for details regarding university policy and definitions). Dishonesty includes, but is not limited to, plagiarism on term papers, unauthorized notes brought into an exam; copying answers from another student or letting another student copy your answers. The penalty for the first offense will be a grade of zero points on the exam or assignment. Penalty for the second offense will be an F for the course.

Campus Carry
Persons holding a Concealed Handgun License can lawfully carry their handgun into a UTEP classroom as long as the gun remains concealed. Open carry remains prohibited on campus. In other words, none of us should see (or be able to tell that there is) a gun at UTEP. Call the University Police at 747-5611 or dial 911 if you see any individual on campus with a handgun or other type of weapon. For more information on campus carry, see [http://sa.utep.edu/campuscarry/]; for more information on overall campus safety, see [http://admin.utep.edu/emergency].