Fall 2022

MECH 4315 (19260) Heat Transfer

Course Description
Introduction to heat transfer by conduction, convection, and radiation; steady and periodic states. *Prerequisites are MECH 3314 Fluid Mechanics and MECH 3312 Thermodynamics with a grade of “D” or better.*

Instructor
Miguel Cedeno, Ph.D.
Assistant Professor of Instruction
Aerospace and Mechanical Engineering

E-mail address: macedenomor@utep.edu
Office: Engineering Building Room E-330
Office hours: Friday via MS Teams 8-9am
Office phone: 915-747-7976

Teaching Assistant: Md Shahjahan Mahmud - mmahmud4@miners.utep.edu
Office Hours: MTWRF 1030-1130am & 330-430pm ACES (Classroom Bld)

Textbook
by Yunus Cengel and Afshin Ghajar
McGraw Hill

Course Content
1. Heat Conduction Equation (Chapter 2)
a. One dimensional heat conduction
b. Heat generation in a solid
2. Steady Heat Conduction (Chapter 3)
a. Plane walls
b. Thermal resistance models
c. Cylinders and Spheres
d. Critical radius of insulation
e. Finned surfaces
3. Transient Heat Conduction (Chapter 4)
a. Lumped system analysis
b. Large plane walls, long cylinders, and spheres
c. Semi-infinite solids
4. External forced convection (Chapter 7)
a. Flow over flat plates
b. Flow across cylinders and spheres
c. Flow across tube banks
5. Internal Forced Convection (Chapter 8)
a. Mean velocity and temperature
b. Entrance region
c. Thermal analysis (constant heat flux, constant surface temperature)

6. Natural Convection (Chapter 9)
a. Grashof number
b. Natural convection over surfaces
c. Natural convection from finned surfaces
d. Natural and forced convection combined

7. Radiation Heat Transfer (Chapter 13)

Grading

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes</td>
<td>200</td>
</tr>
<tr>
<td>Tests (4 given - 3 best will count)</td>
<td>300</td>
</tr>
<tr>
<td>Projects</td>
<td>200</td>
</tr>
</tbody>
</table>

Possible Points 700

There will be ten 12-min quizzes of 20 points each, four 75-minute tests of 100 points each, and two projects given during the semester of 100 points each. There will be no makeups for the tests or quizzes. Your lowest test grade will be dropped.

The projects will consist of small design or experimental type problems that you will have to complete. These projects will be detailed either in class or on Blackboard.

Major Course Objectives

Upon completion of this course, students should be able to:

1. To present a comprehensive and rigorous treatment of classical heat transfer while retaining an engineering perspective
2. To encourage creative thinking and the development of an intuitive feel for heat transfer
3. To prepare the student to effectively use heat transfer in the practice of engineering.

Policy for Quizzes

Quizzes will be based on helping you study for both the Fundamental of Engineering (FE) and Professional Engineering (PE) exams (http://www.ncees.org/exams/).

I recommend that you use an approved calculator similar to what you will use for your certification exams for all your work since this will help you learn how to use all the features of your calculator. These calculators include Casio: All fx-115 models. Any Casio calculator must contain fx-115 in its model name, Hewlett Packard: The HP 33s and HP 35s models, and Texas Instruments: All TI-30X and TI-36X models.
ABET Program Outcomes Impacted

This class significantly addresses the following ABET objectives:
(a) an ability to apply knowledge of mathematics, science, and engineering
(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(c) an ability to design a realistic system, component, or process to meet desired needs
(e) an ability to identify, formulate, and solve engineering problems

Technology requirements
Course content is delivered via the Internet through the Blackboard Collaborate ULTRA. Ensure your UTEP e-mail account is working and that you have access to the Web and a stable web browser. Google Chrome and Mozilla Firefox are the best browsers for Blackboard; other browsers may cause complications. When having technical difficulties, update your browser, clear your cache, or try switching to another browser.

You will need to have access to a computer/laptop, scanner, a webcam, and a microphone. You will need to download or update the following software: Microsoft Office, Adobe Acrobat Reader, Windows Media Player, QuickTime. Check that your computer hardware and software are up-to-date and able to access all parts of the course.

If you do not have a word-processing software, you can download Word and other Microsoft Office programs (including Excel, PowerPoint, Outlook and more) for free via UTEP’s Microsoft Office Portal. Click the following link for more information about Microsoft Office 365 and follow the instructions.

IMPORTANT: If you encounter technical difficulties beyond your scope of troubleshooting, please contact the UTEP Help Desk as they are trained specifically in assisting with technological needs of students. Please do not contact me for this type of assistance.

Course Communication: How we will stay in contact with each other
There are several ways we can keep the communication channels open:
- **Office Hours**: My office hours will be held on MS Teams on Fridays 8-9am. If you need to meet with me during other time, feel free to stop by my office on campus when I’m there.
- **Email**: UTEP e-mail is the best way to contact me. I will make every attempt to respond to your e-mail within 24-48 hours of receipt. **When e-mailing me, be sure to email from your UTEP student account and please put the course number in the subject line.** In the body of your e-mail, clearly state your question. At the end of your e-mail, be sure to put your first and last name, and your UTEP ID.
- **Announcements**: Check the Blackboard announcements frequently for any updates, deadlines, or other important messages.

NETIQUETTE
As we know, sometimes communication online can be challenging. It’s possible to miscommunicate what we mean or to misunderstand what our classmates mean given the lack of
body language and immediate feedback. Therefore, please keep these netiquette (network etiquette) guidelines in mind. Failure to observe them may result in disciplinary action.

- Always consider audience. This is a college-level course; therefore, all communication should reflect polite consideration of other’s ideas.
- Respect and courtesy must be always provided to classmates and to the instructor. No harassment or inappropriate postings will be tolerated.
- When reacting to someone else’s message, address the ideas, not the person. Post only what anyone would comfortably state in a face-to-face situation.
- **Blackboard is not a public internet venue**: all postings to it should be considered private and confidential. Whatever is posted on these online spaces is intended for classmates and professor only. Please do not copy documents and paste them to a publicly accessible website, blog, or other space such as Chegg.

Course Policies: What do you need to do to be successful in the course?

Attendance and participation

Attendance in the course is determined by participation in the learning activities of the course. Your participation in the course is important not only for your learning and success but also to create a community of learners. Participation is determined by completion of the following activities:

- Reading/Viewing all course materials to ensure understanding of assignment requirements
- Other activities as indicated in the weekly modules such as HW (Self-study problems)
- Meet regularly with the TA during additional study sessions posted on BB

Academic dishonesty

Academic dishonesty is prohibited and is considered a violation of the UTEP Handbook of Operating Procedures. It includes, but is not limited to, cheating, plagiarism, and collusion. Cheating may involve copying from or providing information to another student, possessing unauthorized materials during a test (Chegg), or falsifying research data on laboratory reports. Plagiarism occurs when someone intentionally or knowingly represents the words or ideas of another as one's own. Collusion involves collaborating with another person to commit any academically dishonest act. Any act of academic dishonesty attempted by a UTEP student is unacceptable and will not be tolerated. All suspected violations of academic integrity at The University of Texas at El Paso must be reported to the Office of Student Conduct and Conflict Resolution (OSCCR) for possible disciplinary action. To learn more, please visit [HOOP: Student Conduct and Discipline](https://www.utep.edu/students/standard_conduct/policies/).

Reasonable Accommodation Policy: The University is committed to providing reasonable accommodations and auxiliary services to students, staff, faculty, job applicants, applicants for admissions, and other beneficiaries of University programs, services and activities with documented disabilities in order to provide them with equal opportunities to participate in programs, services, and activities in compliance with sections 503 and 504 of the Rehabilitation Act of 1973, as amended, and the Americans with Disabilities Act (ADA) of 1990 and the Americans with Disabilities Act Amendments Act (ADAAA) of 2008. Reasonable accommodations will be made unless it is determined that doing so would cause undue hardship on the University. Students requesting an accommodation based on a disability must register with the [UTEP Center for Accommodations and Support Services](https://www.utep.edu/students/standard_conduct/policies/) (CASS). Contact the Center for
Accommodations and Support Services at 915-747-5148, or email them at cass@utep.edu, or apply for accommodations online via the CASS portal.

Quizzes proctoring software
Quizzes/Tests will make use of Respondus Lock Down Browser and Respondus Monitor inside of Blackboard to promote academic integrity. You are encouraged to learn more about how to use these programs prior to the first test. We’re using Zoom Meetings to proctor the Tests, so have it ready in your phones.

Please review the following guidelines:

- The assessments will only be available at the times identified on the course calendar.
- You may take the test a given time window.
- A reliable Internet connection is essential to completing the exam. If you must go to a location to take the exam (such as the library), be sure to follow their health and safety requirements.
- Respondus Lockdown Browser will require that all internet tabs are closed prior to the start of the test/quiz.
- Respondus Monitor requires a webcam and microphone.
- You will be required to show the webcam your student ID prior to the start of the test.
- Your face should be completely visible during the test. Blocking the camera will disable the test.
- No notes or textbook materials are permitted during the test. Respondus Monitor requires you to take a video of your surrounding area (desk, chair, walls, etc.)
- You should not have conversations with other people and/or leave and return to the area during the test.

Plagiarism detecting software
Some of your course work and assessments may submitted to SafeAssign, a plagiarism detecting software. SafeAssign is used review assignment submissions for originality and will help you learn how to properly attribute sources rather than paraphrase.

Copyright statement for course materials
All materials used in this course are protected by copyright law. The course materials are only for the use of students currently enrolled in this course and only for the purpose of this course. They may not be further disseminated.

Course Resources: Where you can go for assistance UTEP provides a variety of student services and support:
- **Technology Resources**
 - [Help Desk](#): Students experiencing technological challenges (email, Blackboard, software, etc.) can submit a ticket to the UTEP Helpdesk for assistance. Contact the Helpdesk via phone, email, chat, website, or in person if on campus.
- **Academic Resources**
 - [UTEP Library](#): Access a wide range of resources including online full-text access to thousands of journals and eBooks plus reference service and librarian assistance for
enrolled students.

- **University Writing Center (UWC):** Submit papers here for assistance with writing style and formatting, ask a tutor for help and explore other writing resources.
- **Math Tutoring Center (MaRCS):** Ask a tutor for help and explore other available math resources.
- **RefWorks:** A bibliographic citation tool; check out the RefWorks tutorial and Fact Sheet and Quick-Start Guide.

Individual Resources

- **Military Student Success Center:** Assists personnel in any branch of service to reach their educational goals.
- **Center for Accommodations and Support Services:** Assists students with ADA-related accommodations for coursework, housing, and internships.
- **Counseling and Psychological Services:** Provides a variety of counseling services including individual, couples, and group sessions as well as career and disability assessments.

Department of Aerospace and Mechanical Engineering Safety Statement
The Department of Aerospace and Mechanical Engineering at the University of Texas at El Paso is committed to a model of excellence in education that includes providing a safe and healthy environment for its students, staff, faculty, and the general public.

Our goal is to maximize education and research training that can only occur if you, the individual, minimize hazards and risks. This can be done by:

- Providing adequate control of the health and safety risks arising from any and all activities;
- Consulting with employees on matters affecting their health and safety
- Providing and maintaining safe laboratories and equipment;
- Ensuring safe handling and use of substance;
- Ensuring all employees are competent to do their task and have adequate training; and
- Maintaining clean, safe and healthy working conditions

The principal investigator or individual in charge of each laboratory is ultimately responsible for safety in that respective lab. This includes training and ultimate release of the laboratory. Within the Department, we hold every employee (staff, faculty, student) responsible for implementing our safety practices and our departmental safety policy. We hold every employee (staff, faculty, student) responsible for providing leadership within our department to establish effective environmental safety and occupational health standards.
TENTATIVE CLASS SCHEDULE

MEETING TIME: T R 0900-1020
MEETING LOCATION: LART 108

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Chapter(s)</th>
<th>Read Sections</th>
<th>Self-Study Problems</th>
<th>Scheduled and DUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>August 23, 2022</td>
<td>1 – Intro</td>
<td>1.1-9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>August 25, 2022</td>
<td>2 – Heat Conduction Equation: One Dimensional</td>
<td>2.1-5</td>
<td>2-15, 2-17, 2-24, 2-25, 2-48, 2-55C, 2-58, 2-59, 2-61, 2-62, 2-71E</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>August 30, 2022</td>
<td>2 – Heat Conduction Equation: Heat Generation in a Solid</td>
<td>2.6</td>
<td>2-87, 2-90, 2-92</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>September 1, 2022</td>
<td>3 – Steady Heat Conduction: Plane Walls</td>
<td>3.1-2</td>
<td>3-17, 3-20, 3-24, 3-25, 3-28E, 3-29, 3-39E</td>
<td>Quiz 1 - Covering Chap. 2</td>
</tr>
<tr>
<td></td>
<td>September 6, 2022</td>
<td>3- Steady Heat Conduction: Thermal Resistance Models Cylinders and Spheres</td>
<td>3.3</td>
<td>3-55, 3-56, 3-58, 3-62C, 3-66E, 3-71</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>September 8, 2022</td>
<td>-</td>
<td>3.4</td>
<td>3-74E, 3-75, 3-83</td>
<td>Quiz 2 - Covering Ch. 2</td>
</tr>
<tr>
<td></td>
<td>September 13, 2022</td>
<td>Critical Radius of Insulation Finned Surfaces</td>
<td>3.5</td>
<td>3-111 3-114C, 3-115C, 3-118C, 3-122E, 3-123E, 3-127, 3-133E</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>September 15, 2022</td>
<td>-</td>
<td>3.6</td>
<td>-</td>
<td>Quiz 3 - Covering Ch. 3</td>
</tr>
<tr>
<td></td>
<td>September 20, 2022</td>
<td>Test Review 1 Chapters 1-3</td>
<td>Week 1-2 Readings</td>
<td>Week 1-2 Self-Study Problems</td>
<td>-</td>
</tr>
<tr>
<td>Date</td>
<td>Reading Content</td>
<td>Page</td>
<td>Quiz/Assignments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>-------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 22, 2022</td>
<td>4 - Transient Heat Conduction: Lumped System Analysis Large Plane Walls, Long Cylinders, and Spheres</td>
<td>4.1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 27, 2022</td>
<td></td>
<td>4.2</td>
<td>Quiz 4 - Covering Chap. 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 29, 2022</td>
<td></td>
<td>4.2</td>
<td>Quiz 5 - Covering Chap. 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 4, 2022</td>
<td>4 - Large Plane Walls, Long Cylinders, and Spheres Semi-Infinite Solids</td>
<td>4.2</td>
<td>Quiz 6 - Covering Chap. 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 6, 2022</td>
<td></td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 11, 2022</td>
<td>7 - External Forced Convection Flow Over Flat Plates</td>
<td>7.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 13, 2022</td>
<td></td>
<td>7.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 18, 2022</td>
<td>Test Review 2 Chapters 4 and 7 Week 3 - 4 Readings Week 3-4 Self-Study Problems</td>
<td>7.3</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 20, 2022</td>
<td></td>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 25, 2022</td>
<td>7 - Flow Across Cylinders and Spheres</td>
<td>7.3</td>
<td>PROJECT 1 ASSIGNED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 27, 2022</td>
<td>Flow Across Tube Banks</td>
<td>7.4</td>
<td>Quiz 7 - Covering Chap. 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 1, 2022</td>
<td>8 - Int. Forced Convection Mean Velocity and</td>
<td>8.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
<td>Chapter(s)</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>-------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 3, 2022</td>
<td>-</td>
<td>8.2-3</td>
<td>Quiz 8 - Covering Ch. 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 8, 2022</td>
<td>Thermal Analysis</td>
<td>8.4</td>
<td>PROJECT 2 ASSIGNED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 10, 2022</td>
<td>Test Review 3 Chapters 7 and 8 - Week 5 and 6 Readings Week 5 and 6 Self-Study Problems</td>
<td>8-29, 8-31, 8-22</td>
<td>Quiz 9 - Covering Ch. 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 15, 2022</td>
<td>-</td>
<td>-</td>
<td>TEST 3 Chaps. 7 and 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 17, 2022</td>
<td>9 – Natural Convection and Grashof Number</td>
<td>9.1-2</td>
<td>Class Project 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 22, 2022</td>
<td>Natural Convection Over Surfaces and from Finned Surfaces</td>
<td>9.3-4</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 24, 2022</td>
<td>Thanksgiving Holiday - UTEP Closed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 29, 2022</td>
<td>-</td>
<td>9-63, 9-85, 9-86, 9-87E</td>
<td>Class Project 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December 1, 2022</td>
<td>13- Radiation Heat Transfer View Factor</td>
<td>13-1-2</td>
<td>Quiz 10 Covering Chap. 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December 5, 2022</td>
<td>FINAL EXAM: 10-11.30am (TEST 4) Chap 9-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>