Course: CLSC 3364 Hematology II CRN 22056

Restricted for CLIN majors only

Spring 2023

What do you see? What is in your Head?

Hues http://www.xrite.com/online-color-test-challenge

Instructor: M. Lorraine Torres, Ed.D, MT(ASCP)
Office: College of Health Sciences (CHS) Room 423
Phone: 747-7282 e-mail: lorit@utep.edu FAX: 747-7207

Here is the link to the technology support center in case you are having any difficulty with technology UTEP Technology Support Help Desk

NOTE: As a UTEP CLS student all, our courses are interrelated and you may be asked questions over material you have covered in previous CLS courses and or concurrent courses you are taking in a semester.

NOTE: If you are sick – stay home and…
1. Call Ms. Licerio to inform of your absence – 747-8396
2. Notify the instructor BEFORE class if possible
3. If you test positive for COVID, inform UTEP EH&S at 915-747-7162 or COVIDaction@utep.edu
Office Hours: Office Hours: Tuesday 9:00 – 11:00 a.m., Thursday 2:00 – 3:00 p.m. or Friday 9:00 – 10:00 a.m. However, the best time to talk to me is after class or laboratory, as our schedules usually do not allow for meeting at these times. If you are unable to see me at this time, you may arrange an appointment for another time. You can reach me by phone at any time, if I am unable to answer your call, please leave a detailed message and I will return your call as soon as possible. If you feel confused and lost please come and see me; Please do not wait until the last minute. I would like to invite you to use the office hours to clarify points you did not understand in lecture, to discuss subject matter according to your special interests, or to talk about your career goals. If you feel confused or lost, do not wait until the last minute to see me.

Class Schedule: Monday and Wednesday 11:00 – 12:20 p.m. & Friday 1 – 3 for differentials.

Course Description
This course is a sequel to Hematology I. It will include but is not limited to the study of the white blood cells with emphasis on white cell formation and function and the etiology and treatment of white blood cell disorders such as but no limited to leukemia. This course will also encompass an introduction to hemostasis and laboratory determination of hemostatic disorders. Prerequisite; CLSC 3356 & CLSC 3257.

Topical Outline
1. Maturation series and biology of white blood cells
2. Disorders of neutrophils
3. Reactive lymphocytes and Infectious Mononucleosis
4. Acute and chronic leukemias
5. Myelodysplastic syndromes
6. Myeloproliferative disorders
7. Multiple Myeloma and related plasma cell disorders
8. Lymphomas
9. Lipid (lysosomal) storage diseased and histiosytosis
10. Hemostatic mechanisms, platelet biology
11. Coagulation pathways
12. Quantitative and qualitative vascular and platelet disorders (congenital and acquired)
13. Disorders of plasma clotting factors
14. Interaction of the fibrinolytic, coagulation and kinin systems
15. Laboratory methods

Course Objectives:
Successful completion of the course will require that the student be able to
1. Describe normal and abnormal white cell biology according to the various white cell, WHO and FAB classifications and its manifestation seen in bone marrow and peripheral smears.
2. Demonstrate the ability to differentiate between normal and abnormal white cell reactions to various stimuli and relate these reactions to the appropriate disease and or neoplastic states along with the patient's clinical picture and correlating laboratory exams.

3. Describe platelet development and biology and its role in hemostasis.

4. Recognize and describe normal and abnormal coagulation pathways and relate them to various hemostatic disorders along with the corresponding laboratory exams.

Detailed Cognitive Objectives: Covered in Hematology I and II and Hematology Lab found at end of this syllabus.

Affective Objectives

Goals / Purpose: Clinical laboratory science students are expected to show growth in professional behaviors appropriate to a laboratory setting and to maintain those behaviors possessed at time of entry.

Objectives: To show the appropriate responsible behaviors, students will demonstrate:

1. A positive attitude by being prepared for lecture and laboratory sessions, completing assigned tasks on time, and displaying self-motivation and initiative.

2. Organization by utilizing time efficiently, sequencing and prioritizing tasks for completion with time constraints, & maintaining a neat & clean work area.

3. Attention to detail by diligently pursuing accuracy and documenting data accurately and legibly

4. Problem solving ability by explaining the purpose of each step in a diagnosis, interpretation, procedure, or instrument operation, recognizing discrepancies in techniques or procedures, and repeating lab tests when necessary.

5. Dependability by following directions, working independently, after being given directions, and being present and on time with only excused absences.

6. Stability and self-confidence by approaching and performing routine tasks confidently without assistance, and maintaining composure.

7. Appropriate interpersonal skills by cooperating and communicating effectively with classmates and instructors, and displaying courteous, considerate behavior and appropriate appearance.

8. Ethical behavior and integrity by respecting the confidentiality of patient information, complying with professional standards and code of ethics, adhering to safety policies and abiding by all rules and regulations of the institution.
The Flipped or Active Laboratory / Classroom
Most of our laboratories and some lecture courses follow the “Flipped or Active Classroom” model. Students prepare for the in-person sessions by reviewing course materials and content in advance. When they arrive in class they typically have a “quiz” and may work in groups to apply their background knowledge to problem solving case studies or situations. In this model the faculty member acts as their guide and can provide instruction and corrective action as the students go through the work problems. Instead of sitting in a classroom while the instructor tells them how to do the work, the students are actually practicing the problems solving work with the faculty member’s help. Although this is often a significant adjustment for students who have not taken courses like this before, they quickly realize the value of the guided practice sessions.

Your Role in This Course
In order for you to be ready for this class (active classroom, flipped, TBL), it will be important for you to read and prepare outside of class time. Your primary knowledge and understanding of readings will be essential for success with in-class activates and assignments, many of which will take place in collaboration with your team.

Orientation to TBL
The research on teaching and learning is very clear: students learn best when they are actively working with others in teams on real and challenging problems. In this class you will be placed in permanent teams to help team mates learn from each other and the instructor on basic blood bank principles and real-life problems that you will encounter. Passively listening to lecture and memorizing information will not prepare you for your profession role as a medical laboratory scientist where you will be required to solve problems on a daily basis. Discussion, debate and problem solving with others will serve you much better then listening to an instructor talk.

The Study Guide (SG): A tool to Help You Study for In-Class Assignments and Exams
The SG is a tool to help you focus your studying and prepare effectively and efficiently for each class session. The questions in the SG are questions you should be able to answer as a medical laboratory Scientist. The SG also serves as your preparation tool for the exams. In other words, the questions that are on the SG are directly related to the questions on the exams. The SG can also serve as your notebook (if you take notes) and review tool to prepare for the midterm and final exam.

If you chose not to complete the SGs, you also chose not to come to class prepared which will result in
(1) not understanding what is being discussed in class;
(2) not being able to contribute to the in-class assignments;
(3) being an annoyance to your team mates and the instructor because you can’t contribute appropriately
(4) not being able to help other team members understand the material better;
(5) a negative evaluation by your team members; and importantly
(6) you are not using this helpful tool to prepare for the exams and thus likely earn poor grades.

In-class Team Assignments
The in-class team assignments will ask you to make specific decisions concerning specific testing related situations and problems based on the studying you did for the Study Guide. A number of those assignments may be graded. Which ones are graded will be announced during the class session.
TIME NEEDED TO STUDY! **How to be successful in this course**
The typical rule is for each hour you spend in class, you should spend 2-3 hours outside of class studying. On average, you need to read a minimum of one chapter per day and complete the individual assignments.

Try to follow these steps:
1. **DO THIS FIRST!!!** Look at the TENTATIVE course schedule and read the assigned chapter to be covered that day before reviewing the power points.
2. Open PowerPoint lecture and have textbook open and take notes alongside the power point. **DO NOT BE AFRAID TO MARK UP YOUR BOOK.**
3. After reviewing the lecture and taking notes, **RE-READ THE CHAPTER.**
4. Come prepared to class by completing your group and or individual assignment BEFORE class. Answer the objective in the beginning of the chapter, review case studies, and answer questions in the back of the chapter.
5. Bring questions or ask for clarifications with you when you come to the lab.
6. **Make copies of your completed Study Guides as you will have to leave a copy of the study guide in the team folder.**

Major Mistakes Students Make that Negatively Affect Their Grades:
1) Not actively contributing to teamwork.
2) Being absent when in-class assignments were selected for grading.
3) Procrastinating, not working in advance of a deadline and missing it.
4) Having poor time management skills and strategies leading to not putting in the necessary work and time outside of class.
5) Scholastic Dishonesty

Attendance of Class Sessions: Being absent from even one class session will hurt your understanding and performance in the class. You are also likely to miss graded in-class assignments that make up 10% of your grade. If you are not present, you cannot get the points.

Technology Requirements
Course content is delivered via the Internet through the Blackboard learning management system (LMS). Ensure your UTEP e-mail account is working and that you have access to the Web. You may use any of the primary Web browsers—Explorer, Google Chrome, Firefox, Safari, etc. When having technical difficulties, try switching to another browser.

You will need to have or have access to a computer/laptop, printer, scanner, a webcam, and a microphone. You will need to purchase a USB (flash drive). You will need to download or update the following software: Microsoft Office, Adobe, Flashplayer, Windows Media Player, QuickTime, and Java. Check that your computer hardware and software are up-to-date and able to access all parts of the course. If you encounter technical difficulties of any kind, contact the [Help Desk](mailto:helpdesk@utep.edu).
Technology Support, Study Spaces, and Wi-Fi

Technology Support will be available for all students studying remotely or taking classes on campus. Students may contact Technology Support for laptop repair, academic software needs or to set up personal computers to print documents utilizing campus printers. Laptops and Wi-Fi hotspots also are available for checkout. Students should contact Technology Support when help is needed with Blackboard or the online proctoring software.

Lounges, lobbies, and common areas for studying have been reconfigured to support social distancing. Students are encouraged to take advantage of outdoor venues where Wi-Fi has been expanded and enhanced. These venues include:

- Centennial Plaza
- Engineering breezeway
- Interdisciplinary Research Building patio
- Fox Fine Arts 2nd floor breezeway

REQUIRED TEXTBOOKS: same books used for Hematology I

OPTIONAL: A color atlas or your choice but required

Venipuncture: The student must perform a minimum of one successful venipuncture per week for a minimum total of 13 successful venipunctures for the semester. The venipuncture documentation chart on the lab wall will be the record used to assess the grade. The documentation must be made by the end of the week (Friday) by noon. If you complete more than one venipuncture per week it will stand as only one documentation for the week and NOT count toward other weeks. The student is required to have a minimum of 13 documented by the due
date you will still be held accountable for one venipuncture per week as the log indicates. The student will receive a zero for the week if a venipuncture is not documented by the end of the week (Friday by noon).

If the student is recording the venipuncture procedure, the following must be adhered to.
1. Recorded during the specified week and time and date stamped.
2. Viewed by CLS Faculty member during the specified week. Submissions viewed after the designated week will not be given credit and the student will receive a zero for the week.
3. Student must be wearing their CLS scrubs / lab coat and PPE as required.
4. The venipuncture site must be seen in the video. If the venipuncture site is not seen the student will not be given credit for venipuncture.
5. When the venipuncture is completed, the student must show the labeled vacutainer with all the appropriate information. Leave the camera on the tube long enough for the CLS instructor to verify the correct labeling of the tube.

One Friday (TBD) will be used for instructions on how to use a butterfly needle. The collection of this sample will NOT be used as a weekly documentation.

Differentials: The student must perform 80 differentials by the end of the semester (13 weeks). Differential time has been scheduled for Fridays from 9 a.m. – 12 p.m. The student is required to turn in a differential log with a minimum of 4 completed differentials on Friday by noon. The student will receive a zero for the week if the differential log is not turned in at the end of the Friday session. Be aware that IF the student does the minimum requirement for 13 weeks, the student will not meet the goal of completing 80 differentials by the end of the semester. To meet the 80 differential requirement, the student should do a minimum of 6 differentials each Friday (78) plus two more differentials (80) on a day the student chooses. Each differential should not take more than 15 minutes so there is a potential for completing 12 differentials per Friday session.

UNANNOUNCED QUIZZES AND ASSIGNMENTS:
Both announced and unannounced quizzes and assignments will be given throughout the course and will constitute 10% of the final grade. You will need to log on to your Hematology class every day to make sure you do not miss any of the assignments or quizzes. There are no make-up exams or quizzes. **Assignments turned in late will not be accepted.**

Hematology, for educational purposes, has been divided into two components, Hematology I (CLSC 3356) which encompassed the study of the Red Blood Cell and Hematology II (CLSC 3264) which will entail the study of the White Blood Cells and Hemostasis. The Student is expected to recall the information presented in Hematology I and relate the information to Hematology II so as to “complete the picture”. Make it a habit to keep up with the readings and ask me
questions or for calcifications. All exams and final will be taken electronically and are comprehensive. **NO MAKE UP EXAMS WILL BE GIVEN!** At the instructors discretion an exam may be taken late with an **automatic deduction of 10 points.**

EXAMINATIONS:
Five exams and a **comprehensive final** will be given. Exams are worth 45% of the total grade and the final is worth 35%. **No make-up exams will be given.** If an exam is missed (0%), the final grade will be based on the average of 4 exams. **None of the test grades will be dropped.**

HOW DO YOU EARN YOUR GRADE?
Your grade will consist of 2 parts. The percentages shown for each item will be multiplied by the scores you earn.

<table>
<thead>
<tr>
<th>90% Assessments of Individual Performance</th>
<th>10% Assessments of Team Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% i-RAT / Ticket to Class / Quizzes/assignments</td>
<td>5% t-RAT:</td>
</tr>
<tr>
<td>40% 5 Exams questions based on the SGs*</td>
<td>5% Team Assignments; random selection</td>
</tr>
<tr>
<td>5 % Differentials</td>
<td></td>
</tr>
<tr>
<td>5% venipuncture</td>
<td></td>
</tr>
<tr>
<td>30% comprehensive final exam*</td>
<td></td>
</tr>
</tbody>
</table>

*All exams including the final will be comprehensive

% Grade Scale

| 100 – 90 = A |
| 89.9 – 80 = B |
| 79.9 – 75 = C |
| 74.9 – 70 = D (is not passing in CLS) |
| 69.9 – 60 = F |

Test Policy:
There will be five examinations and a comprehensive final. **All exams will be taken on-line during class time. You will need a camera and respondus lockdown to take the exam.** The lecture exams may include brief essay questions and case studies along with multiple choice questions. **No make-up exams will be offered.** If you cannot attend an exam for a legitimate reason, (death, illness etc.) inform the instructor as soon as possible and the instructor will arrange a new time. At the instructors discretion an exam may be taken late with an **automatic deduction of 10 points.** If the student does not make any arrangements (s)he will receive a ZERO on the exam. **Please notice that our grade scale is different from the standard grade scale.** In order to **pass the course you must earn a 75% average and a 74.9% does not constitute a passing grade.** Students in the CLS program cannot continue with the program with a grade of D or below.
INSTRUCTIONAL STRATEGIES:
Hematology is an entirely new subject for most students so it is imperative that the student keeps current in all the readings. MAKE A SPECIAL EFFORT TO LEARN ALL THE HEMATOLOGY VOCABULARY. Each chapter of the book has written objectives. The student should answer these objectives in order to understand the material fully. At the end of the chapters there are review questions the student should answer to help assess the student’s grasp of the chapter content. The back of the chapter also includes a summary chart of the chapter to help the student recall the important subject matter.

Course Drop policy
According to UTEP Curriculum and Classroom Policies, “When, in the judgment of the instructor, a student has been absent to such a degree as to impair his or her status relative to credit for the course, the instructor may drop the student from the class with a grade of “W” before the course drop deadline and with a grade of “F” after the course drop deadline.” See academic regulations in the UTEP Undergraduate Catalog for a list of excuse absences. Therefore, if I find that, due to non-performance in the course, you are at risk of failing, I will drop you from the course. I will provide 24 hours advance notice via email.

Scholastic Integrity
Academic dishonesty is prohibited and is considered a violation of the UTEP Handbook of Operating Procedures. It includes, but is not limited to, cheating, plagiarism, and collusion. Cheating may involve copying from or providing information to another student, possessing unauthorized materials during a test, or falsifying research data on laboratory reports. Plagiarism occurs when someone intentionally or knowingly represents the words or ideas of another as ones' own. Collusion involves collaborating with another person to commit any academically dishonest act. Any act of academic dishonesty attempted by a UTEP student is unacceptable and will not be tolerated. All suspected violations of academic integrity at The University of Texas at El Paso must be reported to the Office of Student Conduct and Conflict Resolution (OSCCR) for possible disciplinary action. To learn more: HOOP: Student Conduct and Discipline.

Accommodations Policy
The University is committed to providing reasonable accommodations and auxiliary services to students, staff, faculty, job applicants, applicants for admissions, and other beneficiaries of University programs, services and activities with documented disabilities in order to provide them with equal opportunities to participate in programs, services, and activities in compliance with sections 503 and 504 of the Rehabilitation Act of 1973, as amended, and the Americans with Disabilities Act (ADA) of 1990 and the Americans with Disabilities Act Amendments Act (ADAAA) of 2008. Reasonable accommodations will be made unless it is determined that doing so would cause undue hardship on the University. Students requesting an accommodation based on a disability must work with the UTEP Center for Accommodations and Support Services BEFORE class. Accommodations are NOT given after the fact.
STATEMENT ON HARRASSMENT

Harassment:
Please be aware that harassment is unacceptable in the classroom. No jokes, comments of sexual nature as well as racists will be tolerated. The student that uses harassment will be sent to the Dean of students for disciplinary action.

NON-DISCRIMINATION STATEMENT

Title IX Statement:
Title IX of the Education Amendments of 1972 (Title IX), prohibit discrimination on the basis of sex in education programs or activities operated by recipients of Federal financial assistance. Sexual harassment of students, which includes acts of sexual violence, is a form of sex discrimination prohibited by Title IX. Sexual violence refers to physical sexual acts perpetrated against a person's will or where a person is incapable of giving consent due to the victim's use of drugs or alcohol. An individual also may be unable to give consent due to an intellectual or other disability. A number of different acts fall into the category of sexual violence, including rape, sexual assault, sexual battery, sexual coercion, stalking, and relationship violence. All such acts of sexual violence are forms of sexual harassment covered under Title IX.

In accordance with Title IX of the Education Amendments of 1972, UTEP does not discriminate on the basis of sex in the operation of its educational programs and activities. This commitment to non-discrimination applies to both employment in and admission to such programs and activities. [Link to full text at http://admin.utep.edu/Default.aspx?tabid=68750]

Inquiries regarding Title IX should be referred to the University's Title IX Coordinator(s):

Gabriel Ramirez, J.D., Title IX Coordinator (Oversees investigations and policy implementation)
915-747-8358 gramirez2@utep.edu

William A. Epperson, Title IX Coordinator (Primary investigator, institutional compliance)
915-747-8797 waepperson@utep.edu

Beatriz Tapia, Deputy Title IX Coordinator Director for Equal Opportunity
915-747-5839 betapia@utep.edu

Dr. Catie McCorry-Andalis, Deputy Title IX Coordinator (Education, Training and Outreach)
915.747.5648 cmandalis@utep.edu

Student Support Services:

All students experience stress and emotional challenges. The following resources can help those feeling stressed, experiencing loss, and considering ending their life.

• UTEP’s Counseling Center offers free counseling to all students with the same number leading to an after-hours crisis line: (915) 747-5302

• Mental Health Crisis Line (915) 779-1800
Student Due Process

Students who believe they have been unfairly evaluated must:

Step 1: Attempt to resolve the difficulty with the faculty member.

Step 2: If the dispute cannot be resolved in Step 1, the student may within 5 school days appeal to the program director stating the evidence for the continued dispute in writing.

Step 3: If still unresolved a written complainant, evidence, and reason for the dissatisfaction must be submitted to the Assistant Dean of the College of Health Sciences. The Assistant Dean will call upon the Due Process Committee to review and make recommendations to the Assistant Dean based on statements, written evidence, and interviews with all parties involved.

Step 4: If the matter is still not settled, the complainant will notify the Dean, within five (5) school days. The Dean will then pursue the matter with the Vice President for Student Affairs.

The process will continue until the matter is resolved.

Course schedule on next page
Hematology II Tentative Schedule

SECTION I: LEUKOCYTES: (Chapters 4, 9, 26 – 34)

JAN 18 – FEB 1
- Jan 18 Cell biology, granulocytic and monocytic series
- Jan 23 Non-malignant Leukocyte disorders
- Jan 25 Lipid (lysosomal) Storage Diseases and Histiocytosis
- Jan 30 Non-malignant Lymphocytic disorders (Reactive lymphocytes & IM)
 FEB 1 EXAM I

FEB 6 – FEB 20
- Feb 6 Introduction to leukemias and acute leukemia (Acute Vs. Chronic)
- Feb 8 Cytogenetics and Molecular Diagnostics
- Feb 13 Flow cytometry / Acute Leukemias
- Feb 15 Acute leukemias
 FEB 20 EXAM II chapters 27,28,30 31

FEB 22 – MARCH 20 Chapters 32, 33, 34.
- Feb 22 Myeloproliferative Neoplasms: CMPD: CML, PV, ET, MF
- Feb 27 Myeloproliferative Neoplasms CMPD: CML, PV, ET,MF
- Mar 1 Myelodysplastic Syndromes
- Mar 6 Mature Lymphoid Neoplasms
- Mar 8 Lymphoma, Multiple Myeloma, and related plasma cell disorders
 Mar 13 spring break no class
 Mar 15 spring break no class
 Mar 20 EXAM III

HEMOSTASIS: NOTE: I do a lot of drawing on the board and limited power points for the first section of hemostasis (Chapters 10, 35-42)

MAR 22 – April 12
- Mar 22 Mechanism of blood coagulation
- Mar 27 Platelet structure and function
- Mar 29 Coagulation Cascade Theory
- Apr 3 Quantitative and qualitative vascular & platelet disorders
- Apr 5 Laboratory Assessment of Blood coagulation factors
- Apr 10 Protective agents against thrombosis
 APR 12 EXAM IV

APRIL 17 – May 3 disorders of primary and 2ndary hemostatis,
- Apr 17 Vascular disorders / Abnormal Platelet Morphology
- Apr 19 Qualitative Platelet Disorders
- Apr 24 Qualitative Characteristics of Platelets
- Apr 26 Bleeding disorders related to blood clotting/Hypercoagulable states
 May 1 COAGULATION EXAM V
 May 3 Review
 May 9 COMPREHENSIVE FINAL (including Heme I) 9A.M. – 12: P.M.

As a reminder, the final exam in Hematology II will be comprehensive including information covered in Hematology I.
MLS Hematology cognitive objective covered in Hematology I, Hematology I Laboratory and Hematology II

Upon completion of this course, the student should be able to: Define, discuss, explain, identify and perform …

Normal hematopoietic system (Hematology I)

Define hematopoiesis

Theory of pluripotent stem cell development
Stem cell kinetics: Generative cell cycle
Hematopoietic inductive environment of regulatory growth factors and inhibitors
Apoptosis

Identify phases and site of origin for cellular development of active hematopoietic tissue in embryo and fetus

Yolk sac
Mesoblastic phase
Hepatic phase (extramedullary)
Medullary/myeloid phase

Identify phases and site of origin for cellular development of active hematopoietic tissue in infant and young child

All red marrow spaces (all cell lines)
Thymus fully developed (T lymphs)
Secondary lymphoid tissue (B-cell, T-cell and NK-cell)

Identify phases and site of origin for cellular development of active hematopoietic tissue in adult

Red marrow (axial skeleton and proximal ends of long bones)
Primary and secondary lymphoid tissue (B-cell, T-cell and NK-cell)

Explain the role of other organ systems in hematopoiesis

Mononuclear phagocyte system
Spleen (Structure, blood flow, function)
Liver (Structure, blood flow, function)
Lymph nodes (Structure, blood flow, function)
Thymus (Structure, blood flow, function)

State the physical findings commonly present in hematologic disease

Splenomegaly
Hypersplenism
Hepatosplenomegaly
Lymphadenopathy

Bone Marrow Tissue (Hematology I)

List indications for performing bone marrow examination

Describe bone marrow collection techniques

Aspiration
Core biopsy

Describe key terms and apply concepts used to assess bone marrow structure and function Level 2
- Myeloid to erythroid ratio (M:E)
- Erythropoiesis
- Granulopoiesis
- Megakaryopoiesis
- Non-hematopoietic cells
- Cellularity: fat (yellow marrow) to cell (red marrow) ratio
- Aplastic marrow
- Hypoplastic marrow

Describe concepts related to the assessment of iron stores and sideroblast Population in the bone marrow Level 2
- Type I
- Type II
- Type III

Perform differential count on normal bone marrow specimens Level 2

Distinguish between normal and abnormal hematopoietic elements found within the peripheral blood Level 2

Correlate bone marrow findings with peripheral blood evaluation Level 3

Prepare peripheral blood for routine hematologic procedure and smear analysis Level 2

Determine specimen acceptability Level 2

List appropriate anticoagulants and mechanism of anticoagulation Level 1

Identify acceptable ratio of anticoagulant to blood for specimens obtained from venipuncture and skin puncture Level 1

List reasons for rejecting specimens Level 1

Stain smears using Romanowsky dyes and techniques according to established procedures Manual, Automated Level 2

List and define components of stain and explain the principle Level 2

Judge the acceptability of blood smears through microscopic evaluation and established criteria Level 3
- Random distribution of cells
- Good stain quality
Absence of artifact

Troubleshoot staining problems Level 3

Correlate peripheral blood evaluation with automated cell analysis Level 3

Enumerate and morphologically evaluate blood cells on Romanowsky stained smears Level 2

Erythropoiesis (Hematology I)

Describe the distinctive features used to characterize developing cells Level 1

- Overall cell diameter or volume
- Nucleus (diameter or volume, relative diameter or volume, staining reaction, chromatin pattern, presence or absence of nucleoli)
- Cytoplasm (relative amount, staining reaction)
- Nuclear:cytoplasmic ratio

List the maturation sequence of developing erythrocytes given Romanowsky stained smears, electronic images or other visual means of representation of blood and bone marrow Level 1

Distinguish nucleated erythrocyte precursors from other hematopoietic elements Level 2

Categorize red cells Level 2

- Diameter or volume
- Shape
- Color
- Inclusions
- Distribution patterns

Describe nutritional and regulatory factors associated with erythropoiesis Level 2

- Erythropoietin (EPO)
- Iron
- Vitamins (B₁₂ / folate)

List hormones associated with erythropoiesis Level 1

- Estrogen/Androgens/Thyroxine/Growth hormone

Identify and discuss components of the mature red cell that are essential for survival and function Level 2

- Membrane composition
 - Lipids/Proteins/Skeletal proteins
- Membrane Function
 - Maintain RBC shape, deformability, and permeability
 - Support system for surface antigens
 - Transport and exchange of gases and ions (cationic pumps)

Describe metabolic pathways for maintenance of cell function Level 1

- Embden-Meyerhof/glycolytic
Hexose monophosphate shunt
Methemoglobin reductase
Luebering-Rapoport

Erythrocytic Hemoglobin (Hematology I)

Summarize the mechanisms by which normal hemoglobin is structured and synthesized in the developing red cell
- Iron transport, uptake, and supply
- Protoporphyrin IX (heme) formation
- Globin synthesis and genetic control (Chromosome 11 and 16)
- Embryonic hemoglobins (Gower I, Gower II, Portland)
- Adult hemoglobins (Hb A, Hb F, Hb A\textsubscript{2})

Describe normal hemoglobin-oxygen function using the oxygen dissociation curve (ODC)

Identify the effect various conditions can have on the oxygen dissociation curve
- pH (Bohr effect)
- Temperature
- CO\textsubscript{2}
- 2,3-DPG (2,3-BPG)
- Hb S, F and other variants

Interpret the effect of various factors on the concentration of hemoglobin
- Age and gender
- Pregnancy
- Altitude
- Smoking
- Associated disease
- Altered hemoglobin derivatives
 - (carboxyhemoglobin/methemoglobin/sulfhemoglobin)

Erythrocytic Catabolism (Hematology I)

Summarize the mechanism by which red cells are catabolized
- Identify phases (extravascular, intravascular)
- Trace the basic steps associated with each phase
- Define terms associated with red cell destruction
 - Biliverdin
 - Bilirubin (unconjugated/conjugated)
 - Urobilinogen
 - Urobilin
 - Hemoglobin dimers
 - Haptoglobin
 - Hemopexin
 - Hemoglobinemia
 - Hemoglobinuria
 - Hemosiderinuria
Methemalbumin

Erythrocyte Evaluation (Hematology I)

Describe procedures to evaluate erythrocytes and their physical properties using patient blood and quality control samples Level 1

Perform procedures to evaluate erythrocytes and their physical properties using patient blood and quality control samples Level 2

State the clinical utility of histogram review in erythrocyte evaluation Level 1

Determine if results are in accordance with prescribed criteria for accuracy and precision Level 3

Discuss automated hemogram parameters used for erythrocyte evaluation Level 1

Hemoglobin
Hematocrit
Mean cell volume (MCV)
Mean cell hemoglobin (MCH)
Mean cell hemoglobin concentration (MCHC)
Red cell distribution width (RDW)

Calculate red blood cell indices when provided appropriate data Level 2

State the principles of method analysis for hemoglobin determination Level 1

Hemoglobin measured at the point-of-care
Cyanmethemoglobin method
Other instrument methods for hemoglobin

Perform erythrocyte sedimentation rates Level 2

Wintrobe
Westergren and its modifications
Automated

Perform standard reticulocyte assays Level 2

Supravital smear method with Miller disc
Supravital smear method without Miller disc
Automated methods

Perform and interpret calculations associated with reticulocyte assays Level 3

Corrected
Absolute
Production index (RPI)
Reticulocyte hemoglobin concentration
Reticulocyte mean volume
Immature reticulocyte fraction (IRF) or reticulated hemoglobin content (CHR)

Determine the appropriate area of a peripheral blood smear to evaluate red Level 2
blood cell morphology

Distinguish between normal and abnormal red blood cell morphology
Level 2

List red blood cell count and indices reference values that account for variations in gender and age
Level 1

Correlate automated hemogram parameters and calculated indices with each other and with peripheral smear exam results
Level 3

Calibrate and perform preventive maintenance on instruments used to evaluate erythrocytes and their physical properties
Level 2

Recognize and troubleshoot pre-analytical (pre-examination), analytical (examination), and post-analytical (post examination) causes of problems or unexpected results
Level 3

Take corrective action to resolve unexpected results and/or events on instruments used to evaluate erythrocytes
Level 3

Make decisions to recommend appropriate follow-up to prevent unexpected results and/or events from reoccurring
Level 3

Leukopoiesis (Hematology II)

State reference values that reflect variations in gender and age for the leukocyte counts in peripheral blood
Level 1

- Total leukocyte count
- Relative and absolute values for neutrophil, lymphocyte, eosinophil, basophil and monocyte counts

Identify factors that alter leukocyte values
Level 1

- Physiologic variation
- Pathologic abnormalities

Enumerate and/or calculate leukocyte counts
Level 2

- Relative values
- Absolute values

List morphologic features used to differentiate developing leukocytes
Level 2

- Overall cell diameter or volume
- Nucleus
- Shape
- Relative diameter
- Nuclear to cytoplasmic ratio (N:C)
- Staining reaction
- Chromatin pattern
- Presence or absence of nucleoli
- Relative amount of cytoplasm
- Cytoplasmic staining properties
Presence or absence of granules and staining reaction in cytoplasm

Leukopoiesis: Granulocytes (Hematology I and II)
- List the maturation sequence of neutrophils, eosinophils, and basophils
 Level 1
- Differentiate distinguishing morphology for stages of developing blood granulocytes
 Level 2
- Explain mechanisms that regulate and modulate granulopoiesis
 Level 2
 - Regulatory growth factors and inhibitors
 - Kinetics (life span, circulation)
 - Biochemistry (granule content and surface membrane receptors, energy metabolism)
- Explain the functions associated with granulocytes
 Level 2
 - Chemotaxis
 - Phagocytosis and killing
 - Allergic response (eosinophils and basophils)
 - Host defense against parasites (eosinophils)
 - Hypersensitivity mediator (basophils and mast cells)

Leukopoiesis: Monocytes and Lymphocytes (Hematology II)
- Summarize structural and functional features that characterize monocytes and macrophages
 Level 2
 - Kinetics (life span, circulation, tissue phase)
 - Function (phagocytosis, antigen-presenting cells (APC), pathogen presenting cells)
- List the maturation sequence of monocytes and macrophages
 Level 1
- List the maturation sequence of lymphocytes
 Level 1
- Summarize structural and functional features that characterize lymphopoiesis
 Level 2
 - Sites of formation and production (Bone marrow, Thymus, Lymph nodes and secondary lymphoid tissue)
 - Kinetics (Life span, Migration)
 - Function
 - Humoral immunity (B lymphocytes and subsets)
 - Cell mediated immunity (T lymphocytes and subsets)
 - Natural killing and antibody dependent cellular cytotoxicity
- Recognize morphology of developing monocytes and macrophages
 Level 1
- Recognize morphology of developing lymphocytes
 Level 1
- Describe the use of monoclonal antibodies to differentiate lymphocytes by immunophenotype
 Level 2
 - B-cell lymphocytes and subsets
 - T-cell lymphocytes and subsets
Natural Killer (NK) cells
Plasma cells

Leukocyte Evaluation ((Hematology I and II)
Perform commonly used methods to evaluate leukocytes Level 2
State the principles and clinical utility of histogram/scatterplot review Level 1
Determine absolute and relative white cell counts on patient and control specimens using manual and automated methods in accordance with prescribed criteria for accuracy and precision Level 2
Calibrate and perform preventive maintenance on instruments used to evaluate white cells Level 2
Determine differential cell counting using automated methods Level 2
Evaluate white cell histograms and scatterplots for diagnostic and quality control purposes Level 3
Identify and classify normal and abnormal white cells on a properly stained Romanowsky blood smear Level 2
Correlate and verify automated cell counts and differentials with established criteria Level 3
Estimate the total white blood count from a smear Level 2
Correct leukocyte counts for the presence of nucleated red cells Level 2
Calibrate and perform preventive maintenance on instruments used to evaluate leukocytes and their physical properties Level 2
Recognize and troubleshoot pre-analytical (pre-examination), analytical (examination), and post-analytical (post examination) causes of problems or unexpected results Level 3
Take corrective action to resolve unexpected results and/or events on instruments used to evaluate leukocytes Level 3
Make decisions to recommend appropriate follow-up to prevent unexpected results and/or events from reoccurring Level 3

Nonmalignant Leukocyte Disorders ((Hematology II)
Explain the classification of nonmalignant leukocytic disorders Level 1
Quantitative changes
Qualitative changes
Compare and contrast absolute values with relative values
- Neutrophilia
- Neutropenia
- Eosinophilia
- Eosinopenia
- Basophilia

Associate quantitative and qualitative leukocyte disorders with expected results
- Bone marrow production and release
- Rate of entry into peripheral circulating pools
- Shifts between circulating and marginating pools
- Rate of exit into tissues

Identify morphologic changes in neutrophils that may accompany nonmalignant neutrophilic disorders
- Shift to the left
- Toxic granulation
- Dohle bodies
- Vacuolization
- Leukemoid reaction
- Leukoerythroblastic reaction
- Agranulocytosis
- Hypossegmentation
- Hypersegmentation

State characteristic abnormalities and clinical features for the qualitative/functional disorders of neutrophils
- Pelger-Huet anomaly
- Alder-Reilly anomaly
- Chediak-Higashi anomaly
- May-Hegglin anomaly
- Chronic granulomatous disease (CGD)
- Myeloperoxidase deficiency
- Leukocyte adhesion deficiency

Describe qualitative and quantitative alterations of monocytes

Define monocytosis

Compare absolute monocyte values with relative values

Identify causes of monocytosis

Identify abnormal lipid accumulations within monocytes and macrophages

Identify causes of non-neoplastic disorders of lymphocytes and plasma cells
Define lymphopenia/lymphocytosis Level 1

Compare lymphocyte absolute values with relative values Level 2

Compare and contrast morphologic features of reactive lymphocytes and normal lymphocytes Level 3
 - Size
 - Nucleus
 - Cytoplasm
 - Heterogeneity

Differentiate between reactive and resting lymphocytes on Romanowsky stained smears Level 2

Identify the causes of reactive lymphocytosis Level 2

Red Blood Cell Disorders: Anemia (Hematology I)

Define anemia Level 1

State the clinical signs and symptoms of anemia
 - Hemoglobin
 - Hematocrit
 - Red blood cell count
 - RBC indices
 - Red cell distribution width (RDW)
 - Peripheral smear
 - Reticulocyte count
 - Bone marrow evaluation

List the categories used in a morphological classification of the anemias Level 1

Describe the expected laboratory results seen in the various pathophysiologic classifications of anemias
 - Decreased red cell production (Bone marrow failure, ineffective hematopoiesis, Myelophthsic)
 - Increased red cell destruction, hemolytic processes
 - Loss of red blood cells

Discuss the clinical utility of the RBC indices as relates to physiologic conditions Level 3

Explain sources of error of the red cell indices Level 2

Use the RBC indices as a quality control mechanism for assessing the validity of the erythrocyte count, hemoglobin, and hematocrit values Level 2

Define common terms used to describe red cell morphology Level 1
 - Anisocytosis
 - Poikliocytosis
Polychromatic
Rouleaux
Agglutination
Acanthocyte/Spur Cell
Codocyte/Target Cell/Leptocyte
Dacryocyte/Tear Drop Cell
Drepanocyte/Sickle Cell
Echinocyte/Burr Cell
Elliptocyte
Keratocyte
Schistocyte
Spherocyte
Stomatocyte
Basophilic stippling
Cabot rings
Heinz bodies
Howell-Jolly bodies
Malarial parasites
Pappenheimer bodies/siderotic granules
Hemoglobin crystals
Hemoglobin H

Describe the composition and morphology and list the possible pathologic conditions of various red blood cell inclusions
Basophilic stippling
Cabot rings
Heinz bodies
Howell-Jolly bodies
Malarial and other blood parasites
Pappenheimer bodies/siderotic granules
Hemoglobin crystals (C, S, SC, H inclusion bodies)

Red Blood Cell Disorders: Erythrocytosis (Polycythemia) (Hematology I)
Polycythemia vera is in Hematology II

Define polycythemia

Differentiate between absolute polycythemia and relative polycythemia

Compare and contrast secondary polycythemia, and relative erythrocytosis

Etiology
Clinical features
Laboratory findings
Prognosis

Describe changes in the bone marrow and peripheral blood with polycythemia vera

Red Blood Cell Disorders: Hypochromic Anemias (Hematology I)

Define hypochromic anemia

List the causes of hypochromic anemias
Discuss the etiology and pathophysiology of hypochromic anemias

Iron deficiency anemia
Sideroblastic anemia
Anemia of chronic disease
Hemochromatosis/Hemosiderosis
Porphyrias
Thalassemia

Compare and contrast laboratory findings in iron deficiency anemia, anemia of chronic disease/inflammation and sideroblastic anemia

Serum ferritin
Serum iron
Transferrin/Total Iron Binding Capacity (TIBC)
Percent transferrin saturation
Bone marrow evaluation for ringed sideroblasts
Free erythrocyte protoporphyrin (FEP)/zinc protoporphyrin (ZPP)
Transferrin receptor tests
Hepcidin

Outline a laboratory approach to the evaluation of a patient’s iron status

Red Blood Cell Disorders: Megaloblastic Anemias (Hematology I)

Discuss the absorption and metabolism of vitamin B\textsubscript{12} and folate

Describe clinical features of megaloblastic anemia

Identify the hematologic abnormalities present in megaloblastic anemia

Peripheral blood changes
Bone marrow-morphological changes

Compare and contrast pernicious anemia to the other types of vitamin B\textsubscript{12} deficiency

Outline a sequential approach to the differential diagnosis of megaloblastic anemia using the following laboratory procedures

Mean corpuscular volume (MCV)
Blood and bone marrow smear evaluation
Serum B\textsubscript{12}
Serum folate
Red cell folate
Anti-intrinsic factor antibodies
Anti-parietal cell antibodies
Methylmalonic acid
Homocysteine

Differentiate nonmegaloblastic macrocytosis from megaloblastic anemia

Peripheral blood and bone marrow characteristics
Serum vitamin B₁₂ level
Serum folate level
Red cell folate level
Reticulocyte findings

- Define aplastic anemia
 - Identify common factors associated with the development
 - Describe the clinical features and pathophysiology
 - Acquired aplastic anemia
 - Fanconi’s anemia
 - Congenital pure red blood cell aplasia
 - Anemia caused by myelophthisis
 - Describe the laboratory findings
 - Peripheral blood changes
 - Bone marrow changes
 - Other laboratory findings

- Define Fanconi’s anemia
 - Describe the genetics and possible pathophysiology
 - Describe the laboratory findings
 - Peripheral blood changes
 - Bone marrow changes
 - Other laboratory findings

- Define pure red cell aplasia (Diamond-Blackfan anemia)
 - Describe the clinical features and pathophysiology
 - Describe the laboratory findings
 - Peripheral blood changes
 - Bone marrow changes
 - Other laboratory findings
Define and differentiate Congenital dyserythropoietic anemias (types I, II, and III) Level 2

Describe the clinical features Level 1

Describe the laboratory findings Level 1

Define myelophthisis Level 1

Describe the clinical features Level 1

Describe the laboratory findings Level 1

Peripheral blood changes
Bone marrow changes
Other laboratory findings

Red Blood Cell Disorders: Hemolytic Anemias (Hematology I)

Describe the etiology, pathophysiology, clinical features, and laboratory findings of red cell membrane defects Level 1

Hereditary spherocytosis
Hereditary elliptocytosis
Paroxysmal nocturnal hemoglobinuria (PNH)
Hereditary pyropoikilocytosis
Hereditary acanthocytosis
Hereditary stomatocytosis (hydrocytosis)
Hereditary xerocytosis

Identify and correlate data from laboratory tests that are used to detect increased RBC destruction and production due to RBC membrane abnormalities Level 2

Discuss the principle of the Osmotic fragility test Level 1

Discuss the clinical features Level 1

Describe the laboratory findings Level 1

Perform /observe the procedure Level 2

Apply appropriate quality control procedures Level 2

Evaluate results Level 3

Describe the utility of flow cytometry in assessing red cell membrane defects Level 2

Describe the etiology, pathophysiology, and clinical features of red cell enzyme abnormalities Level 1

Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Pyruvate kinase (PK) deficiency
Methemoglobin reductase

Discuss the principles of G6PD assay, pyruvate kinase assay and staining for Heinz Bodies Level 1

Identify laboratory test results based upon Level 1
Red Blood Cell Disorders: Hemoglobinopathies (Hematology I)

Define hemoglobinopathy Level 1

Distinguish between qualitative and quantitative hemoglobin defects Level 1

Describe clinical and laboratory findings of hemoglobinopathies Level 1
- Hb SS
- Hb AS
- Hb CC
- Hb AC
- Hb DD
- Hb EE
- Hb SC

Identify the amino acid substitutions associated with sickle cell anemia and hemoglobin C disease Level 1

Describe the physiologic abnormality associated with hemoglobin variants with altered oxygen affinity (Unstable hemoglobins, Methemoglobinemia) Level 1

Describe the hemoglobin gene defect in alpha and beta thalassemia Level 1

Define the hemoglobin defect in thalassemia Level 1

Describe the terminology associated with thalassemias Level 1
- Alpha thalassemia
 - 4 gene deletion
 - 3 gene deletion (Hb H disease)
 - 2 gene deletion
 - 1 gene deletion
- Beta thalassemia
 - Beta-thalassemia major
 - Beta-thalassemia intermedia
 - Beta-thalassemia minor

Describe the clinical features associated with different gene combinations in alpha and beta thalassemia Level 1

Describe the pathophysiology of thalassemias Level 1
- Hemoglobin Lepore
- Delta-beta thalassemia
- Hb H
Bart’s hemoglobin
Hereditary persistence of fetal hemoglobin
Hb Constant Spring

Identify the characteristic clinical and laboratory findings associated with thalassemia
Level 1

Describe the peripheral blood morphology associated with different gene combinations in alpha and beta thalassemia
Level 1

Discuss the principle of the solubility test for sickling hemoglobin
Level 1

 Describe the laboratory findings
 Level 1

 Perform /observe the procedure
 Level 2

 Apply appropriate quality control procedures
 Level 2

 Evaluate results
 Level 3

Discuss the principles of hemoglobin electrophoresis (cellulose acetate, alkaline pH vs. citrate agar, acid pH)
Level 1

 Describe the laboratory findings
 Level 1

 Perform /observe the procedure
 Level 2

 Apply appropriate quality control procedures
 Level 2

 Evaluate results
 Level 3

Describe the separation of hemoglobin by capillary electrophoresis
Level 1

Discuss the principles of hemoglobin quantification (HbA, HbA2, HbF)
Level 1

 Describe the laboratory findings
 Level 1

 Perform /observe the procedure
 Level 2

 Apply appropriate quality control procedures
 Level 2

 Evaluate results
 Level 3

Describe acid elution test (Kleihauer-Betke) or flow cytometry in regards to Hemoglobinopathies
Level 1

Correlate screening test for sickling hemoglobin with peripheral blood morphology and electrophoretic patterns of hemoglobin
Level 3

Identify the electrophoretic patterns (cellulose acetate, alkaline pH vs. citrate agar, acid pH)
Level 2

 Hb F, Hb A, Hb S, Hb C, Hb D, Hb E, Hb A2

Hemolytic Anemias (Hematology I)

Identify mechanisms of immune hemolytic anemias
Level 1

Define and describe the etiology and clinical features and laboratory findings of Alloimmune hemolytic anemias
Level 1
Acute hemolytic transfusion reaction
Delayed hemolytic transfusion reaction
Hemolytic disease of the newborn (HDN)

Define and describe the etiology and clinical features and laboratory findings of... Level 1
Autoimmune hemolytic anemias
 Warm autoimmune hemolytic anemia (WAIHA)
 Cold autoimmune hemolytic anemia
 Cold agglutinin syndrome (Idiopatic, Secondary)
 Paroxysmal cold hemoglobinuria

Identify mechanisms of drug-induced immune hemolytic anemia Level 1

Identify the etiology of nonimmune hemolytic anemia Level 1
 Infectious organisms
 Mechanical agents
 Chemicals

Describe the hematologic findings associated with nonimmune hemolytic anemias Level 1
 Malaria
 Babesiosis
 Bartonellosis
 Clostridium perfringens (welchii) infection
 Cardiac prosthetic devices
 Microangiopathic hemolytic anemia
 Chemicals and venoms
 Thermal injury
 Disseminated intravascular coagulation

Acute Blood Loss (Hematology I)

Describe the etiology of anemia of acute blood loss Level 1

List the clinical symptoms of acute blood loss Level 1

Identify the laboratory findings of acute blood loss Level 1

Anemias associated with systemic disorders (Hematology I)

Describe the clinical features and laboratory findings associated with nonhematologic disorders Level 1

Chronic disorders and inflammation
 Connective tissue disorders
 Malignant diseases
 Renal disease
 Liver disease
 Alcoholism
 Endocrine disease
Neoplastic Disorders (Hematology II)

Define and list categories associated with Neoplastic Disorders of Leukocytes
 Level 1
 Leukemias
 Myelodysplastic syndromes
 Myeloproliferative disorders
 Lymphoproliferative disorders

Identify major systems used to classify neoplastic disorders of leukocytes
 Level 1
 French, American-British (FAB) Cooperative Group
 World Health Organization (WHO)

Observe and/or perform procedures, apply appropriate quality control procedures, and interpret laboratory findings for laboratory procedures used in the identification, classification and differentiation of neoplastic disorders
 Complete blood count
 Hemograms
 Scatterplots and histograms

Review the criteria used to classify nonmalignant leukocytic disorders
 Level 1
 Quantitative changes
 Qualitative changes (inherited, acquired)

Identify on Romanowsky stained smears, photographs, electronic images or other visual means of representation of morphologic changes in neutrophils that may accompany nonmalignant neutrophilic disorders
 Level 2
 Shift to the left
 Toxic granulation
 Döhle bodies
 Vacuolization
 Leukemoid reaction
 Leukoerythroblastic reaction
 Agranulation, hypogranulation
 Hypossegmentation
 Hypersegmentation
 Intracellular microorganisms

Compare and contrast the principles of various cytochemical stains and the cell lineages they react with
 Level 2
 Myeloperoxidase
 Sudan black B (SBB)
 Esterases (specific substrate/non-specific substrate
 Periodic-acid Schiff (PAS)
 Leukocyte alkaline phosphatase (LAP)
 Tartrate resistant acid phosphatase (TRAP)
 Iron staining
Describe the use of various diagnostic techniques used to assess neoplastic disorders of blood and bone marrow cells

- Immunophenotyping
- Terminal deoxynucleotidyl transferase (TdT)
- Monoclonal antibodies
- myeloid from lymphoid
- T and B cell immunophenotypes
- Acute myelocytic leukemia (AML) subgroups cell lineages

Cytogenetics
Molecular genetics

Apply knowledge and skills in interpreting laboratory results and recognizing clinical syndromes that are unique to the neoplasm

Read case studies of neoplastic disorders and apply knowledge and skills in interpreting laboratory results

Acute Leukemias (Hematology II)

Apply general criteria to classify leukemias

- Cell maturity (Acute/Chronic)
- Cell lineage (Myeloid /nonlymphoid)
- Lymphoid

Describe the clinical findings and laboratory results for leukemia

Compare the FAB with the WHO acute myeloid leukemia subgroups and apply diagnostic blood and bone marrow findings to the differential identification

FAB classification

- M0--acute myeloid leukemia with minimal differentiation
- M1--acute myeloid leukemia without maturation
- M2--acute myeloid leukemia with maturation
- M3--acute promyelocytic leukemia
- M4--acute myelomonocytic leukemia
- M5--acute monoblastic leukemia
- M6--acute erythroleukemia
- M7--acute megakaryoblastic leukemia

WHO classification

- AML with recurrent genetic abnormalities
- AML with myelodysplasia-related changes
- Therapy-related myeloid neoplasms

List the WHO acute leukemia subgroups

- AML with recurrent genetic abnormalities
- AML with myelodysplasia-related changes
- Therapy-related myeloid neoplasms
- AML, not otherwise specified

Interpret findings from immunophenotypic, cytogenetic and molecular findings
and apply to criteria used by WHO

Describe for each leukemia
- Clinical findings and symptoms
- Incidence and epidemiology
- Risk factors associated with the development of leukemia
- Hereditary abnormalities
- Environmental
- Viral infections
- Immunologic disorders

Identify the pathophysiology of leukemia
- Stem cell clonality
- Oncogene and tumor suppressor gene development

Describe the survival rates and prognosis

Describe the treatment options and correlation with hematologic complications
- Chemotherapy
- Bone marrow/stem cell transplant

Identify diagnostic findings on permanently stained blood and bone marrow smears, photographs, kodachromes, or electronic images by which the FAB cooperative group and WHO classify acute leukemia
- Morphology, number, and differentiation of blast and immature cells
- Greater than 30%
- Predominant cell type
- Auer rods

Define the reactivity of leukemic cells with cytochemical stains

Apply diagnostic blood and bone marrow findings to the differential identification
- Acute myeloid leukemia (AML)
- Acute nonlymphocytic leukemia (ANLL)
- M0--acute myelogenous with minimal differentiation
- M1--acute myelogenous without maturation
- M2--acute myelogenous with maturation
- M3--acute promyelocytic leukemia
- M3m--acute promyelocytic leukemia variant
- M4--acute myelomonocytic leukemia
- M4E0--acute myelomonocytic leukemia variant
- M5--acute monocytic leukemia
- M5a--poorly differentiated
- M5b--well differentiated
- M6--acute erythroleukemia
- M7--acute megakaryocytic leukemia
- Acute lymphocytic leukemia (ALL): L1,L2,L3-Burkitt's
List the subgroups (WHO) and apply diagnostic blood, bone marrow, immunophenotype, cytogenetics and molecular findings to the differential identification
- B lymphoblastic leukemia/lymphoma, not otherwise specified
- T lymphoblastic leukemia/lymphoma

Interpret findings from an immunologic workup to formulate an immunophenotypic classification for ALL by applying criteria used by WHO
- B lineage
- Early B precursors
 - “Common” CALLA (CD10) positive
- Pre-B
- T-cell lineage and early T precursor (pro-T, pre-T, cortical-T, medullary-T)
- Precursor lymphoid neoplasms

List cytogenetic and molecular abnormalities commonly associated with the major acute leukemic subtypes

Myelodysplastic Syndromes (MDS) (Hematology II)
Define and describe cellular features that characterize the MDS
- Dyserythroid differentiation
- Dysgranulopoiesis
- Dysmegakaryocytopoiesis

List subgroups recognized by the World Health Organization (WHO) Cooperative Groups for the MDS classification and discuss the rationale for revisions to the classification
- Refractory cytopenia with unilineage dysplasia (RCUD)
- Refractory anemia (RA)
- Refractory neutropenia (RN)
- Refractory thrombocytopenia (RT)
- Refractory anemia with ringed sideroblasts (RARS)
- Refractory cytopenia with multilineage dysplasia (RCMD)
- Refractory anemia with excess blasts (RAEB)
 - RAEB-1
 - RAEB-2
- Myelodysplastic syndrome, unclassifiable (MDS-U)
- Myelodysplastic syndrome with isolated del (5q)

List subgroups recognized by the French, American, and British (FAB) Cooperative Group for the MDS classification
- Refractory anemia (RA)
- Refractory anemia with ringed sideroblast (RARS)
- Refractory anemia with excess blast (RAEB)
- Chronic myelomonocytic leukemia (CMML)
- Refractory anemia with excess blasts in transition (RAEB-t)

Identify key morphologic features on permanently stained blood and bone marrow

Level 2
smears, photographs, electronic images or other visual means of representation

Correlate the diagnostic blood and bone marrow findings to the differential identification

Describe characteristics of MDS
- Median age of onset
- Epidemiology
- Chromosomal association with pathogenesis
- Clinical course with associated hematologic changes
- Treatment options
- Prognosis

Chronic Myeloproliferative Neoplasms (Hematology II)

Classify Chronic Myeloproliferative Neoplasms by cell type
- Granulocytes—Chronic myelogenous/granulocytic leukemia (CML/CGL)
- Erythrocytes—polycythemia vera (PV)
- Megakaryocytes—essential thrombocythemia (ET)
- Fibroblasts—agnogenic myeloid metaplasia (AMM)

List Chronic Myeloproliferative Neoplasms subtypes
- Chronic myelogenous leukemia (CML) BCR/ABL1 positive
- Essential thrombocythemia (ET)
- Primary myelofibrosis (PMF)
- Chronic neutrophilic leukemia (CNL)
- Chronic eosinophilic leukemia not otherwise specified (CEL, NOS)
- Mastocytosis

List subgroups recognized by WHO for the myelodysplastic/myeloproliferative classification and discuss the rationale for the classification
- Chronic myelomonocytic leukemia (CMML)
 - CMML-1
 - CMML-2
- Atypical chronic myeloid leukemia (aCML), BCR-ABL1 negative
- Juvenile myelomonocytic leukemia (JMML)
- MDS/MPN, unclassifiable

Discuss and compare features commonly shared by Chronic Myeloproliferative Neoplasms
- Clinical manifestations
- Pathophysiological mechanisms
- Blood and bone marrow findings
- Transitional forms between stages
- Disease evolution with potential for blastic transformation

Identify key morphologic features on permanently stained blood and bone marrow smears, photographs, kodachromes, or electronic images
Correlate diagnostic criteria to these findings for the differential identification Level 3

Chronic myelogenous leukemia (CML)
- Leukocytosis with absolute neutrophilia and left shift maturation
- Absolute basophilia and eosinophilia
- Thrombocytosis
- Bone marrow hypercellularity with granulocytic proliferation
- Cytogenetic (karyotype): t(9;22)(q34;q11)
- Molecular products: BCR/ABL fusion gene, fusion mRNA

Polycythemia vera (PV)
- Increased red blood cell (RBC) mass
- Leukocytosis with mild left shift maturation and basophilia
- Thrombocytosis
- Bone marrow hypercellularity with all cell lines increased
- Molecular studies (JAK2)
- Red cell morphology (Initial phase, “Spent” phase)

Essential thrombocythemia (ET)
- Marked thrombocytosis with platelet aggregates and abnormal forms
- Megakaryocytic hyperplasia of bone marrow
- Molecular studies

Primary myelofibrosis (PMF)
- Leukopoerythroblastosis with teardrop-shaped red cells
- Leukocytosis with left shift maturation to occasional immature myeloid cell
- Bone marrow fibrosis and relationship to megakaryocytic hyperplasia
- Molecular studies

Identify treatment options and recognize effects on peripheral blood white cells, Level 3
- Chemotherapy
- Splenic irradiation/splenectomy
- Phlebotomy
- Bone marrow or stem cell transplant
- Targeted molecular therapy

Chronic Lymphoproliferative Disorders (Hematology II)
Name and classify the chronic lymphoid leukemias by T and B cell lineage Level 1
- Chronic lymphocytic leukemia (CLL)
- B-cell prolymphocytic leukemia (PLL)
- Plasma cell neoplasms
- Hairy cell leukemia (HCL)
- Adult T-cell leukemia
- Sézary syndrome
- Extranodal marginal zone lymphoma or mucosa-associated lymphoid tissue (MALT lymphoma)
- Follicular lymphoma
- Mantel cell lymphoma
- Diffuse large B-cell lymphoma, not otherwise specified
- Burkitt lymphoma
Identify key morphologic features on permanently stained blood and bone marrow smears, photographs, kodachromes, or electronic images

List diagnostic features CLL
- Median age of onset
- Symptoms and clinical findings
- Blood and bone marrow findings
- Peripheral blood absolute lymphocytosis
- Leukemic cell line of mature, small lymphocytes with monotonous morphology and smudge/basket cells
- Immunophenotypic cell surface markers and clonality
- Bone marrow lymphocytosis

Recognize and describe features associated with aggressive forms of the disease
- Autoimmune hemolytic anemia (AIHA)
- Chromosome and/or molecular abnormalities
- Richter’s syndrome
- Immunophenotypic cell surface markers

Name and compare systems used to stage disease severity and progress
- Modified Rai
- Binet

Discuss the diagnostic features of PLL
- Median age of onset and gender
- Clinical finding of severe splenomegaly
- Blood and bone marrow findings
- Markedly elevated white count with absolute lymphocytosis
- White cell differential predominantly of prolymphocytes (greater than 55%)
- Immunophenotypic profile
- Chromosome and/or molecular

Discuss the diagnostic features of HCL
- Median age of onset and gender
- Clinical finding of severe splenomegaly
- Blood and bone marrow findings
- Pancytopenia
- Morphology: leukemic cell line of “hairy” cells
- Immunophenotypic B-cell profile
- “Dry” tap; marrow fibrosis and infiltrates

Discuss treatment options
- Splenectomy
- Other drugs
- Describe laboratory findings seen in the variant form of HCL

List diagnostic features of Adult T-cell leukemia
- T-cell large granular lymphocytic leukemia (LGL)
Human T-cell lymphotropic virus-1 (HTLV-1)
Endemic areas

Apply diagnostic criteria to blood and bone marrow findings for the differential identification of Adult T-cell leukemia
Lymphoid cell line of small to large cells with cloverleaf/knotty nucleus
Immunophenotypic T cell associated profile

Identify key morphologic features on permanently stained blood and bone marrow smears, photographs, electronic images or other means of visual representation

List diagnostic features of Sézary syndrome
Relationship to mycosis fungoides
Clinical findings--skin involvement

Review blood and bone marrow findings of Sézary syndrome
Absolute lymphocytosis
Morphology: lymphoid cell line of medium cells with cerebriform nucleus
Immunophenotypic T cell associated profile

Lymphoma (Hematology II)
Define lymphoma and generally classify using key terminology
Hodgkin
Reed-Sternberg cells
Rye modified cells
Non-Hodgkin

Outline a multidisciplinary workup and list laboratory findings used to diagnose and stage Hodgkin lymphoma
Complete blood count (CBC)
Liver function tests
Renal function tests
Blood and bone marrow findings of Hodgkin’s lymphoma
Radiologic studies
Physical examination
Lymph node biopsy

Recognize key morphologic features and correlate with diagnostic criteria for the presence of lymphoma cells

Plasma Cell Disorders (Hematology II)
Name disorders based on proliferation of plasma cells and abnormal production of immunoglobulins

Discuss classification based on proliferation of plasma cells and abnormal
production of immunoglobulins
 Multiple myeloma
 Waldenstrom’s macroglobulinemia
 Plasma cell leukemia (PCL)
 Heavy-chain disease
 Monoclonal gammopathy of undetermined significance (MGUS)

Compare and contrast classification based on proliferation of plasma cells and abnormal production of immunoglobulins

Compare and contrast the following for plasma cell disorders
 Pathophysiology
 Clinical findings
 Laboratory findings
 Complete blood count (CBC) and peripheral smear review
 Bone marrow biopsy including immunophenotypic cell markers
 Blood and urine protein electrophoresis and immunoelectrophoresis
 Quantitative immunoglobulins
 Chemistry panels—blood urea nitrogen, creatinine, calcium, lactic dehydrogenase
 Serum viscosity
 Beta-2-microglobulin
 Radiologic studies of bones

Identify key morphologic features for plasma cell disorders on permanently stained blood and bone marrow smears, photographs, electronic images or other visual means of representation
 Flaming plasma cell
 Mott cells
 Rouleaux formation of red blood cells

Thrombopoiesis/megakaryopoiesis (Hematology II)

List the maturation sequence for stages of developing megakaryocytes and platelets

Cite reference values for absolute platelet counts in the peripheral blood

Correlate quantitative variations with disease manifestations
 Thrombocytopenia
 Thrombocytosis

Correlate functional or qualitative variations of platelets with disease manifestations

Perform absolute platelet counts on patient and control specimens using manual and automated methods in accord with prescribed criteria for accuracy and precision
 State the principles of method analysis and histogram/scatterplot review
 Compare absolute count with those estimated from blood smear exam

Identify platelets and platelet morphologic variations on a properly prepared Romanowsky stained blood smear and/or recognize factors that alter hemogram results
Platelet satellitism
Platelet aggregates
Giant platelets
Cell fragments
Extreme microcytosis

Evaluate platelet histograms and scatterplots for diagnostic and quality control purposes
Platelet satellitism
Platelet aggregates
Giant platelets
Cell fragments
Extreme microcytosis
Agranular and hypogranular platelets

Recognize and troubleshoot pre-analytical (pre-examination), analytical (examination) and post-analytical (post-examination) causes for problems or unexpected results

Make decisions to recommend appropriate follow-up to prevent unexpected results and/or events from reoccurring

Calibrate and perform preventive maintenance on instruments used to evaluate platelets

Hemostasis/Coagulation (Hematology II)
Define hemostasis

Explain the general interaction of systems involved in maintaining hemostasis
Of systems involved in maintaining hemostasis describe how changes in one effect the other
Vascularity
Platelets
Plasma coagulation factors
Fibrinolysis

Differentiate between primary and secondary hemostasis

Vascular (Hematology II)
Explain the functions of the vascular system in maintaining hemostasis

Describe metabolic functions of the endothelium and substances contributing to the thromboresistance properties of endothelium
Heparan sulfate
Thrombomodulin
Tissue plasminogen activator
Prostacyclin (PGI2)
Tissue factor pathway inhibitor

Platelets (Hematology II)

Discuss the production of platelets Level 1

State the average time in circulation, normal peripheral count, and total body distribution of platelets Level 1

Describe the ultrastructural components of a platelet Level 1
- Alpha granules
- Dense bodies
- Lysomes
- Microtubules
- Open canalicular system
- Platelet membrane
- Glycocalyx

Discuss the physiological role of platelets in hemostasis
- Platelet plug formation
- Maintaining normal vascular integrity

Describe the series of morphologic changes that occur in platelets following physiologic stimulation Level 1
- Adhesion
- Aggregation
- Activation

Discuss the effect of aspirin on platelet function Level 1
- Biochemical mechanism
- Duration of the effect

Discuss principle for platelet aggregometry and platelet function analyzers Level 2

Interpret results of platelet function assay tests Level 3
- Significance in terms of platelet function
- Associated abnormal conditions
- Sources of error

Discuss the principle and clinical significance of platelet aggregation Level 1
- Describe the principle of light transmittance, whole blood impedance and lumiaggregometry Level 1
- Perform the procedure Level 2
- Describe the procedure Level 2
- Describe appropriate quality control procedures and sources of error Level 1
- Interpret results and clinical significance Level 3
Plasma coagulation factors (Hematology II)

Define the coagulation factors
- Roman numerals
- Common names
- Synonyms

Discuss the physiological role of the coagulation phase within the hemostatic process

Discuss characteristics of the coagulation factors
- Contact group
- Prothrombin group
- Fibrinogen group

List the vitamin K-dependent factors

Compare and contrast the plasma-based (in vitro) and cell-based (in vivo) mechanisms of coagulation (Level 3)
- Plasma-based (in vitro) mechanism
 - Intrinsic
 - Extrinsic
 - Common
- Cell-based (physiologic, in vivo) mechanism
 - Initiation
 - Amplification
 - Propagation

Identify substances that are contact activators in vitro

Summarize the interaction of the coagulation system with the vascular and platelet systems to form a hemostatic plug

Describe the physiologic controls of hemostasis
- Blood flow
- Feedback inhibition
- Liver clearance

Identify the inhibitors of hemostasis
- Antithrombin III
- Heparin cofactor II
- Tissue factor pathway inhibitor (TFPI)
- Protein C
- Protein S
- Alpha-2-macroglobulin
- Alpha-1-antitrypsin
- C1 inactivator
- Z-dependent protease inhibitor (ZPI)

Identify the special precautions that must be taken in the collection and
subsequent handling of specimens for coagulation testing
 Anticoagulant
 Ratio of blood to anticoagulant
 Patient hematocrit values
 Centrifugation
 Storage conditions including temperature
 Transport
 Phlebotomy procedure
 (e.g., time tourniquet is on arm, needle gauge, probing, etc.)
Identify and describe tests that are used to monitor the coagulation phase of
Hemostasis

Discuss the principle and clinical significance of the Prothrombin time test Level 1
 Perform the procedure (performed in preceptorship) Level 2
 Describe the procedure Level 2
 Describe appropriate quality control procedures and sources of error Level 1
 Interpret results Level 3
 Describe the International Normalized Ratio (INR) Level 1
 Calculate an INR given the international sensitivity index of the thromboplastin Level 2
 Describe interferences and sources of error Level 1

Discuss the principle and clinical significance of the Activated partial Level 1
 thromboplastin time
 Perform the procedure (performed in preceptorship) Level 2
 Describe the procedure Level 2
 Describe appropriate quality control procedures and sources of error Level 1
 Interpret results Level 3
 Describe interferences and sources of error Level 1

Discuss the principle and clinical significance of the Activated clotting time Level 1
 Perform the procedure (performed in preceptorship) Level 2
 Describe the procedure Level 2
 Describe appropriate quality control procedures and sources of error Level 1
 Interpret results Level 3
 Describe interferences and sources of error Level 1

Discuss the principle and clinical significance of the Thrombin clotting time Level 1
 Perform the procedure (performed in preceptorship) Level 2
 Describe the procedure Level 2
 Describe appropriate quality control procedures and sources of error Level 1
 Interpret results Level 3
 Describe interferences and sources of error Level 1

Discuss the principle and clinical significance of the Fibrinogen assay Level 1
 Perform the procedure (performed in preceptorship) Level 2
 Describe the procedure Level 2
 Describe appropriate quality control procedures and sources of error Level 1
 Interpret results Level 3
Describe interferences and sources of error Level 1

Discuss the principle and clinical significance of Factor assays Level 1
Perform the procedure (performed in preceptorship) Level 2
Describe the procedure Level 2
Describe appropriate quality control procedures and sources of error Level 1
Interpret results Level 3
Describe interferences and sources of error Level 1

Identify technical conditions that cause false coagulation testing results Level 1

Fibrinolytic system (Hematology II)

Define fibrinolysis Level 1
Discuss the physiological role of the fibrinolytic system Level 1
Identify the major components of the fibrinolytic system Level 1
Discuss the mechanisms of the activation of plasminogen Level 1
 - Intrinsic activators
 - Extrinsic activators
 - Exogenous activators
List the major fragments of fibrinogen degradation Level 1
Explain the role and clinical significance of physiologic controls Level 1
 - Alpha-2-antiplasmin
 - Alpha-2-macroglobulin
 - Plasminogen activator inhibitors (PAI)
Identify and describe laboratory procedures that are used to evaluate Level 1
the fibrinolytic system

Discuss the principle and clinical significance of the FDP assay Level 1
Perform the procedure (performed in preceptorship) Level 2
Describe the procedure Level 2
Describe appropriate quality control procedures and sources of error Level 1
Interpret results Level 3

Discuss the principle and clinical significance of the D-Dimer Assay Level 1
Perform the procedure (performed in preceptorship) Level 2
Describe the procedure Level 2
Describe appropriate quality control procedures and sources of error Level 1
Interpret results Level 3

Identify technical conditions that cause false coagulation testing results with or without established protocol Level 1

Disorders of primary hemostasis (Hematology II)

Differentiate between disorders of the vasculature Level 2
 - Acquired purpura
 - Henoch-Schölein purpura
 - Hereditary hemorrhagic telangiectasia
 - Ehlers-Danlos syndrome
Pseudoxanthoma elasticum

Define the following terms associated with hemostasis disorders
Thrombocytopenia
Thrombocytosis
Thrombocythemia

Describe the etiology, pathophysiology, clinical features, and laboratory findings of quantitative defects of platelets
Idiopathic thrombocytopenic purpura
Autoimmune thrombotic thrombocytopenic purpura
Post-transfusion purpura
Disseminated intravascular coagulation
Hemolytic uremic syndrome
MYH9 inherited thrombocytopenias, e.g. May-Hegglin anomaly
Wiscott Aldrich anomaly
Neonatal alloimmune thrombocytopenia
HELLP syndrome
Heparin-induced thrombocytopenia
Drug-induced immune thrombocytopenia
Myeloproliferative disorders
Secondary (reactive) conditions

Describe the etiology, pathophysiology, clinical features, and laboratory findings of qualitative defects of platelets
von Willebrand’s disease
Bernard-Soulier syndrome
Glanzmann’s thrombasthenia
Storage pool deficiencies
Acquired platelet function disorders

Disorders of secondary hemostasis (Hematology II)
Describe the inheritance pattern, pathophysiology, clinical features, and laboratory findings
Factor I deficiency
Factor II deficiency
Factor V deficiency
Factor V Leiden
Factor VII deficiency
Factor VIII deficiency (Hemophilia A)
Factor IX deficiency (Hemophilia B)
Factor X deficiency
Factor XI deficiency
Factor XII deficiency
Factor XIII deficiency
Prekallikrein deficiency
High-molecular-weight kininogen deficiency
von Willebrand’s disease
Alpha-2-antiplasmin deficiency
Antithrombin III deficiency
Heparin co-factor II deficiency
Protein C deficiency
Protein S deficiency
Plasminogen deficiency
Homocystinemia/homocystinuria

Describe clinical features and laboratory findings of acquired coagulation disorders
Vitamin K deficiency
Liver disease
Renal disease

Describe the significance and clinical implications of the development of circulating anticoagulants
Specific factor inhibitors
Nonspecific factor inhibitors
Global inhibitors

Identify and describe laboratory procedures that are used to evaluate circulating anticoagulants or inhibitors

Discuss the principle and clinical significance of Correction study using normal plasma
Perform the procedure (performed in preceptorship)
Describe the procedure
Describe appropriate quality control procedures and sources of error
Interpret results

Discuss the principle and clinical significance of APTT screening with moderate-high LA responsive reagent (LA-sensitive, low phospholipid)
Perform the procedure (performed in preceptorship)
Describe the procedure
Describe appropriate quality control procedures and sources of error
Interpret results

Discuss the principle and clinical significance of the Dilute Russell viper venom time (DRVVT)
Perform the procedure (performed in preceptorship)
Describe the procedure
Describe appropriate quality control procedures and sources of error
Interpret results

Discuss the principle and clinical significance of the Low-phospholipid (LA-sensitive) vs. high-phospholipid APTT
Perform the procedure (performed in preceptorship)
Describe the procedure
Describe appropriate quality control procedures and sources of error
Interpret results Level 3

Discuss the principle and clinical significance of the Platelet neutralization procedure Level 1

Perform the procedure (performed in preceptorship) Level 2

Describe the procedure Level 2

Describe appropriate quality control procedures and sources of error Level 1

Interpret results Level 3

Outline a protocol to follow when investigating a patient with an unknown bleeding disorder Level 2

Factor assays with dilutions for detection of nonparallel results

Bethesda titer for factor VIII or IX inhibitors

Describe interferences and sources of error

Disorders of fibrinolysis (Hematology II)

Differentiate between primary and secondary fibrinolysis Level 1

Define disseminated intravascular coagulation (DIC) Level 1

Identify mechanisms by which clotting is initiated during DIC Level 1

Describe the effect of DIC on laboratory procedures Level 1

Prothrombin time

Activated partial thromboplastin time

Thrombin clotting time

Platelet count

Fibrinogen

Fibrin/fibrinogen degradation products (FDP)

D-dimer

Blood smear

Describe conditions that are predisposing to recurrent thrombosis Level 1

Antithrombin III deficiency

Heparin cofactor II deficiency

Primary antiphospholipid antibody syndrome

Protein C deficiency

Protein S deficiency

Activated Protein C resistance

Prothrombin gene mutation (G20210A)

Hyperhomocystinemia

Acquired risk factors to thrombophilia (e.g., age, malignancies, including leukemias, chronic inflammation, surgery, immobilization, obesity, pregnancy, hormone replacement therapy, oral contraceptives, PNH, autoimmune disorders)

Describe laboratory tests for antithrombin III, protein C, and protein S comparing activity vs. antigen techniques Level 1

Perform the procedure (performed in preceptorship) Level 2
Describe the procedure Level 2
Describe appropriate quality control procedures and sources of error Level 1
Interpret results Level 3

Anticoagulant therapy (Hematology II)

Explain the action of anticoagulant therapy Level 1
Vitamin K Reductase inhibitors
Direct acting oral anticoagulants
Heparin high/low molecular weight
Antiplatelet agents

Identify laboratory tests used to monitor anticoagulant therapy, indicate Level 2
therapeutic intervals and sources of error and discuss emerging assays
Oral anticoagulant therapy (warfarin) Vitamin K Reductase inhibitors
Direct acting oral anticoagulants
 Oral direct Xa inhibitors; anti-Xa
Heparin high/ low molecular weight
 Low molecular weight heparin; chromogenic anti-Xa
 Unfractionated heparin; PTT and chromogenic anti-Xa
Pentasaccharide, e.g., fondaparinux sodium (chromogenic anti-Xa)
Direct thrombin inhibitors; APTT, ecarin clotting time, dilute thrombin assay
Antiplatelet agents; platelet aggregometry
 Aspirin
 Thienopyridines: Clopidogrel, prasugrel
 Glycoprotein IIbIIIa inhibitors

Instrumentation (Hematology I)

Identify basic concepts of electrical impedance, optical detection, radio frequency, Level 1
and of light scatter plus cytochemical stain systems
 Discuss the principle Level 1
 List components Level 1
 Describe operation Level 1
 Perform Analysis (performed in preceptorship) Level 2
 Describe maintance and troubleshooting Level 1
 Perform maintance/ corrective action (performed in preceptorship) Level 2
Identify basic concepts of quality assurance for automated hematology cell Level 1
counting systems
 Describe acceptable practices Level 1
 Perform basic quality assurance (performed in preceptorship) Level 2
 Assess data to ensure quality. Level 3
 Monitor quality assurance program Level 3
 Describe the limitations and list interfering substances Level 1

Identify and describe hemogram parameters Level 1
 Evaluate patient data Level 3
 Describe the flagging system Level 1
 Correlate scatter plots, histograms and data plots with the peripheral smear Level 3
 Describe the mathematical calculations used to monitor instruments Level 3
<table>
<thead>
<tr>
<th>Topic</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognize unexpected results</td>
<td>Level 1</td>
</tr>
<tr>
<td>Troubleshoot and corrective action</td>
<td>Level 2</td>
</tr>
<tr>
<td>Discus the principle of Automated reticulocyte counting</td>
<td>Level 1</td>
</tr>
<tr>
<td>Describe acceptable practices</td>
<td>Level 1</td>
</tr>
<tr>
<td>Perform basic quality assurance (performed in preceptorship)</td>
<td>Level 2</td>
</tr>
<tr>
<td>Assess data to ensure quality</td>
<td>Level 3</td>
</tr>
<tr>
<td>Monitor quality assurance program</td>
<td>Level 3</td>
</tr>
<tr>
<td>Describe the limitations and list interfering substances</td>
<td>Level 1</td>
</tr>
<tr>
<td>Identify basic concepts of electromechanical and photo-optical systems</td>
<td>Level 1</td>
</tr>
<tr>
<td>Describe acceptable practices</td>
<td>Level 1</td>
</tr>
<tr>
<td>Perform basic quality assurance (performed in preceptorship)</td>
<td>Level 2</td>
</tr>
<tr>
<td>Assess data to ensure quality</td>
<td>Level 3</td>
</tr>
<tr>
<td>Monitor quality assurance program</td>
<td>Level 3</td>
</tr>
<tr>
<td>Describe the limitations and list interfering substances</td>
<td>Level 1</td>
</tr>
<tr>
<td>Identify basic concepts of quality assurance for automated coagulation systems</td>
<td>Level 1</td>
</tr>
<tr>
<td>Describe acceptable practices</td>
<td>Level 1</td>
</tr>
<tr>
<td>Perform basic quality assurance (performed in preceptorship)</td>
<td>Level 2</td>
</tr>
<tr>
<td>Assess data to ensure quality</td>
<td>Level 3</td>
</tr>
<tr>
<td>Monitor quality assurance program</td>
<td>Level 3</td>
</tr>
<tr>
<td>Describe the limitations and list interfering substances</td>
<td>Level 1</td>
</tr>
<tr>
<td>Identify basic concepts of spectrophotometric, chromogenic substrate assays</td>
<td>Level 1</td>
</tr>
<tr>
<td>Describe acceptable practices</td>
<td>Level 1</td>
</tr>
<tr>
<td>Perform basic quality assurance (performed in preceptorship)</td>
<td>Level 2</td>
</tr>
<tr>
<td>Assess data to ensure quality</td>
<td>Level 3</td>
</tr>
<tr>
<td>Monitor quality assurance program</td>
<td>Level 3</td>
</tr>
<tr>
<td>Describe the limitations and list interfering substances</td>
<td>Level 1</td>
</tr>
<tr>
<td>Identify basic concepts of overall laboratory quality assurance</td>
<td>Level 1</td>
</tr>
<tr>
<td>Describe acceptable practices</td>
<td>Level 1</td>
</tr>
<tr>
<td>Perform basic quality assurance (performed in preceptorship)</td>
<td>Level 2</td>
</tr>
<tr>
<td>Assess data to ensure quality</td>
<td>Level 3</td>
</tr>
<tr>
<td>Monitor quality assurance program</td>
<td>Level 3</td>
</tr>
</tbody>
</table>