Course: CLSC 3356 Hematology I
Restricted for CLIN majors only
Corequisite: CLSC 3257
On-line asynchronous

What do you see? What is in your Head?

Hematology is the branch of internal medicine, physiology, pathology, clinical laboratory work, and pediatrics that is concerned with the study of blood, the blood-forming organs, and blood diseases. Hematology includes the study of etiology, diagnosis, treatment, prognosis, and prevention of blood diseases. The laboratory work that goes into the study of blood is performed by a clinical laboratory scientist.

Instructor: M. Lorraine Torres, Ed.D, MT(ASCP)
Office: College of Health Sciences (CHS) Room 423
Phone: 747-7282     e-mail: lorit@utep.edu     FAX: 747-7207
Here is the link to the technology support center in case you are having any difficulty with technology  

UTEP Technology Support Help Desk

Virtual Office Hours:  10:00 – 11:00 a.m. via blackboard on Tuesday and Wednesday. You can also set up a meeting via e-mail. I would like to invite you to use the office hours to clarify points you did not understand in lecture, to discuss subject matter according to your special interests, or to talk about your career goals. If you feel confused or lost, do not wait until the last minute to see me. The best time to reach me is during is during my office hours or during the Hematology laboratory.

Welcome to the UTEP Clinical Laboratory Science Program
Clinical Laboratory Sciences is a profession that serves as a vital partner in clinical diagnosis and medical decision-making. Clinical laboratory scientists perform laboratory analyses to diagnose, treat, and monitor disease, and to evaluate the maintenance of an individual’s health. These healthcare professionals are experts in the scientific disciplines of clinical chemistry, hematology, immunology, immunohematology, and microbiology.

NOTE: As a UTEP CLS student all, our courses are interrelated and you may be asked questions over material you have covered in previous CLS courses and or concurrent courses you are taking in a semester.

REQUIRED TEXTBOOKS:

NOTE: 5th edition is ok too.


Here is the link to the UTEP Bookstore
**UTEPS Bookstore**

The University Bookstore will be open during the fall semester. In an effort to reduce the number of individuals inside the bookstore, students are encouraged to purchase their items online and either pick up their products in store or have their items delivered. An online pickup location will be available in the lobby.

University Bookstore Hours:
Monday – Friday: 8 a.m. to 5 p.m.
Saturday: 10 a.m. to 2 p.m.
Sunday: Closed

Hours during first week of school:
Monday – Thursday: 7 a.m. – 7 p.m.
Friday: 8 a.m. – 5 p.m.
Saturday 9 a.m. – 5 p.m.
Sunday: Closed

For more information, please visit the University Bookstore at [utepbookstore.com](http://utepbookstore.com).

Email: 1006mgr@follett.com or 1006asm@follett.com

Staff members will try to respond within 72 hours during the work week, but it may be longer because of the expected heavy volume of back-to-school shoppers.

**Technology Support, Study Spaces, and Wi-Fi**

Technology Support will be available for all students studying remotely or taking classes on campus. Students may contact Technology Support for laptop repair, academic software needs or to set up personal computers to print documents utilizing campus printers. Laptops and Wi-Fi hotspots also are available for checkout. Students should contact Technology Support when help is needed with Blackboard or the online proctoring software.

**UTEPS Technology Support page** offers links to three web pages that are available to help the UTEP community learn, teach and work from off-campus: learning remotely, remote teaching, and working remotely. For students, they’ve included links to Blackboard tutorials and access to various software and OneDrive downloads. Also, check out tips to optimize your internet home usage.

Lounges, lobbies, and common areas for studying have been reconfigured to support social distancing. Students are encouraged to take advantage of outdoor venues where Wi-Fi has been expanded and enhanced. These venues include:

- Centennial Plaza
- Engineering breezeway
- Interdisciplinary Research Building patio
- Fox Fine Arts 2nd floor breezeway

Check them out on our campus map.
COURSE DESCRIPTION
This course is the first part of a two part Hematology course series. Hematology I will cover the red cell series and Hematology II will cover the white cell series and hemostasis. Hematology I is designed to provide a basic understanding of the fundamental mechanisms involved in all facets of erythrocyte formation and function and etiology and treatment of red blood cell disorders. This course will examine normal and abnormal erythrocyte hematopoiesis and the resulting anemias, hemoglobinopathies, polycythemia, and other erythrocyte dyscrasias.

GOAL:
This course is designed to introduce the basic concepts of hematology and its clinical application to the Clinical Laboratory Science student. This course will provide the student with the knowledge to accurately identify normal and abnormal components of the hematopoietic system and identify various testing procedures to evaluate the patient results in light of clinical evidence.

OBJECTIVES
At the end of this course, students will be able to:

1. Recognize and describe normal and abnormal hematopoiesis and its manifestation in bone marrow and peripheral smears.

2. Demonstrate their ability to differentiate between normal and abnormal blood cells in the peripheral blood.

3. Select the appropriate hematological analysis and evaluate results in light of patient abnormalities.

4. Given patient blood results / data, the student should be able to recall objectives at the basic taxonomic level and use this recall to interpret patient results to apply and examine knowledge gained and apply this knowledge in a problem-solving manner to correctly predict diagnose of the patient.

5. Synthesize and appreciate the importance of accurate testing and evaluation in providing the patient and the clinician with the accurate tools for diagnosis, treatment and disease prevention by evaluating patient results and correlating these results to situations when erroneous results are obtained either though instrument error or apathy among laboratoriens.

NOTE: Each chapter of the book has written objectives. The student should answer these objectives in order to understand the material fully.
Affective Objectives
Upon completion of this course, the student should be able to exhibit the appropriate responsible behaviors by demonstrating:

1. A positive attitude by being prepared for lecture and laboratory sessions completing assigned tasks on time and displaying self-motivation.

2. Organization by utilizing time effectively, sequencing and prioritizing tasks for completion with time constraints and maintaining a neat clean work.

3. Attention to detail by diligently pursuing accuracy and documenting data accurately and legibly.

4. Problem solving ability by explaining purpose of each step in diagnosis, interpretation, procedure, recognizing discrepancies in techniques or procedures and repeating necessary lab tests when necessary.

5. Dependability by following directions, working independently after being given directions.

6. Stability and self-confidence by approaching and performing routine tasks confidently without assistance and maintaining composure.

7. Appropriate interpersonal skills by cooperating and communicating effectively with classmates and instructors and displaying courteous, considerate behavior and appropriate appearance.

8. Ethical behavior and integrity by respecting confidentiality of patient information, complying with professional standards and code of ethics, adhering to safety policies and abiding by all rules and regulations of the institution.

Detailed Cognitive Objectives: Covered in Hematology I and II and Hematology Lab.
The objectives are listed beginning on page 10.

Psychomotor Objectives: Refer to the Hematology Laboratory syllabus.

Technology Requirements
Course content is delivered via the Internet through the Blackboard learning management system (LMS). Ensure your UTEP e-mail account is working and that you have access to the Web. You may use any of the primary Web browsers—Explorer, Google Chrome, Firefox, Safari, etc. When having technical difficulties, try switching to another browser.

You will need to have or have access to a computer/laptop, printer, scanner, a webcam, and a microphone. You will need to purchase a USB (flash drive). You will need to download or update the following software: Microsoft Office, Adobe, Flashplayer, Windows Media Player,
QuickTime, and Java. Check that your computer hardware and software are up-to-date and able to access all parts of the course. If you encounter technical difficulties of any kind, contact the Help Desk.

**Netiquette: 10 Rules of Netiquette for Students**
The rules for online learning and classroom learning are virtually the same: You have to study, take notes, attend classes and participate in discussions. In the classroom, your words, gestures, posture and facial expressions communicate your thoughts and observations to your classmates and teachers. But how do you express yourself online, where the written word is all they see?

During your online CLS classes, you will frequently be asked to participate in online discussions and will occasionally do peer reviews of your classmates’ work. Here are 10 rules of netiquette that will help you successfully communicate as you learn online.

1. **Make sure identification is clear in all communications.** Begin with a salutation (“Hi, Jason!”) and end with your signature (“Hannah Kay, CLS Immunology class”).

2. **Review what you wrote and try to interpret it objectively.** When we speak face to face and are misunderstood, we have an on-the-spot opportunity to rephrase our words. In writing, we must strive twice as hard to be understood, as we do not have the benefit of modifying or elaborating in real time. All caps (“I’M SHOUTING”) and exclamation points (“Give me a break!!!”) can be misinterpreted as intense anger or humor without the appropriate context.

3. **If you wouldn’t say it face to face, don’t say it online.** When you’re working online, you’re safe behind a screen, but that’s no excuse to be ill-mannered or say things you would never say in public.

4. **Don’t assume everyone understands where you’re coming from.** Sarcasm and wit is often the spice of in-person conversation, but in online discussion, it can not only lose its edge, it can bite! In your high school classroom, all students were the same age, came from similar backgrounds and lived in the same area. In contrast, your online classroom is made up of people of all ages and cultures who have varied backgrounds, lifestyles and geographic locations. With this in mind, review what you wrote before contributing to the conversation and ask yourself, “Will everyone get the joke?”

5. **Don’t spam.** Please don’t take advantage of your connection with the other students in your online classroom to forward emails and links regarding your political/spiritual beliefs or to sell your services.

6. **Use emoticons.** In casual chatroom settings, emoticons can help convey feelings that may otherwise get lost in translation, including humor, exasperation, exhaustion and even confusion.
7. **Respect others’ privacy.** Don’t give out another student’s personal email address without permission.

8. **Remember, if it’s on the internet, it’s everywhere.** Don’t share personal information about yourself in a public online forum, especially something that could put your safety or security at risk.

9. **Follow the rules.** Just as your online college posts guidelines related to [academic integrity and student expectations](#), online forums also have rules of conduct. Make a point to read them every time, as they can vary from class to class.

10. **Forgive and forget.** If you’re offended by something another student says online, keep in mind that you may have misunderstood their intentions. Give them the benefit of the doubt.

**Accommodations Policy**
The University is committed to providing reasonable accommodations and auxiliary services to students, staff, faculty, job applicants, applicants for admissions, and other beneficiaries of University programs, services and activities with documented disabilities in order to provide them with equal opportunities to participate in programs, services, and activities in compliance with sections 503 and 504 of the Rehabilitation Act of 1973, as amended, and the Americans with Disabilities Act (ADA) of 1990 and the Americans with Disabilities Act Amendments Act (ADAAA) of 2008. Reasonable accommodations will be made unless it is determined that doing so would cause undue hardship on the University. Students requesting an accommodation based on a disability must work with the [UTEP Center for Accommodations and Support Services](#) BEFORE class. Accommodations are NOT given after the fact.

**Scholastic Integrity**
Academic dishonesty is prohibited and is considered a violation of the UTEP Handbook of Operating Procedures. It includes, but is not limited to, cheating, plagiarism, and collusion. Cheating may involve copying from or providing information to another student, possessing unauthorized materials during a test, or falsifying research data on laboratory reports. Plagiarism occurs when someone intentionally or knowingly represents the words or ideas of another as ones’ own. Collusion involves collaborating with another person to commit any academically dishonest act. Any act of academic dishonesty attempted by a UTEP student is unacceptable and will not be tolerated. All suspected violations of academic integrity at The University of Texas at El Paso must be reported to the [Office of Student Conduct and Conflict Resolution (OSCCR)](#) for possible disciplinary action. To learn more: [HOOP: Student Conduct and Discipline](#).
Student Resources

UTEP provides a variety of student services and support:

- **UTEP Library**: Access a wide range of resources including online, full-text access to thousands of journals and eBooks plus reference service and librarian assistance for enrolled students.
- **Help Desk**: Students experiencing technological challenges (email, Blackboard, software, etc.) can submit a ticket to the UTEP Helpdesk for assistance. Contact the Helpdesk via phone, email, chat, website, or in person if on campus.
- **University Writing Center (UWC)**: Submit papers here for assistance with writing style and formatting, ask a tutor for help and explore other writing resources.
- **Math Tutoring Center (MaRCS)**: Ask a tutor for help and explore other available math resources.
- **History Tutoring Center (HTC)**: Receive assistance with writing history papers, get help from a tutor and explore other history resources.
- **Military Student Success Center**: UTEP welcomes military-affiliated students to its degree programs, and the Military Student Success Center and its dedicated staff (many of whom are veterans and students themselves) are here to help personnel in any branch of service to reach their educational goals.
- **RefWorks**: A bibliographic citation tool; check out the RefWorks tutorial and Fact Sheet and Quick-Start Guide.

**UTEP Library Hours and Resources**

Starting Aug. 24, the University Library’s hours are as follows:

- Monday – Thursday: 7 a.m. – 8 p.m.
- Friday: 7 a.m. – 6 p.m.
- Saturday – Sunday: 9 a.m. – 6 p.m.

For up to date hours, visit [https://www.utep.edu/library/about/library-hours.html](https://www.utep.edu/library/about/library-hours.html)

**TIME NEEDED TO STUDY! How to be successful in this course**

The typical rule is for each hour you spend in class, you should spend 2-3 hours outside of class studying. **ON AVERAGE, YOU NEED TO READ A MINIMUM OF ONE CHAPTER PER DAY.** Try to follow these steps:

1. **DO THIS FIRST!!!** Look at the tentative course schedule, read that chapter to be covered.
2. Open PowerPoint lecture and have text book open and take notes alongside the power point. **DON’T BE AfTAID TO MARK UP YOUR BOOK.**
3. After reviewing the lecture and taking notes, **RE-READ THE CHAPTER.**
4. Answer the objective in the beginning of the chapter, review case studies, and answer questions in the back of the chapter.
5. **Bring questions or ask for clarifications with you when you come to the lab.**
Test Policy:
There will be four examinations and a comprehensive final. **All exams are on-line and you will need a camera and respondus lockdown to take the exam.** The lecture exams may include brief essay questions and case studies along with multiple choice questions. **No make-up exams will be offered.** If you cannot attend an exam for a legitimate reason, (death, illness etc.) inform the instructor as soon as possible and the instructor will arrange a new time. If the student does not make any arrangements (s)he will receive a ZERO on the exam. **Please notice that our grade scale is different from the standard grade scale.** In order to pass the course you must earn a 75% average and a 74.9% does not constitute a passing grade. Students in the CLS program cannot continue with the program with a grade of D or below.

EXAMINATIONS:
Four exams and a **comprehensive final** will be given. Exams are worth 40% of the total grade and the final is worth 40%. **No make-up exams will be given.** If an exam is missed (0%), the final grade will be based on the average of 4 exams. **None of the test grades will be dropped.**

**GRADING SCALE:**

A 100 - 90%
B 89 - 80%
C 79 - 75%
D 74.9 – 70%
F 69 or below

**FINAL GRADE CALCULATION:**

Exams 40%
Quizzes/ homework 20%
Final 40%

**QUIZZES AND ASSIGNMENTS:**
Assignments and quizzes will be given throughout the course and will constitute 20% of the final grade. There are no make-up exams or quizzes. **Late assignments will not be accepted** and student will receive a grade of zero (0%) for that assignment.

**University / CLS Policy on examinations:**
When examinations are administered, students are to place backpack, papers and other personal belongings out of reach and view while taking the on-line exams. No hats, caps, or bulky clothing may be worn. Phones may not be used as a calculator. Programmable calculators are not to be used in the CLS Program, only basic calculators will be allowed and the on-line exam will have the calculator on screen if needed. If a student misses an exam or a quiz, a make-up exam may be taken **ONLY IF** the student has informed the instructor of the absence prior to the beginning of the examination, and only if the absence is approved by the instructor, only in rare instances will a student be excused from an examination or a quiz. If permission is given to take an exam or a quiz, it will be scheduled at the convenience of the instructor. Make-up exams/quizzes, while they may cover the same material may differ from the exam/quiz taken by the rest of the class in organization, format, or specific item data.
MAKE UP EXAMS/QUIZZES (WITH INSTRUCTOR’S APPROVAL)
Make up exams/quizzes will have an automatic deduction of 7 points. Make ups exams/quizzes, while they may cover the same material may differ from the exam/quiz taken by the rest of the class in organization, format, or specific item data.

INSTRUCTIONAL STRATEGIES:
Hematology is an entirely new subject for most students so it is imperative that the student keeps current in all the readings. MAKE A SPECIAL EFFORT TO LEARN ALL THE HEMATOLOGY VOCABULARY. Each assigned reading should be read at least twice. There will be a quiz and or a ticket to class at the beginning of almost every class. Each chapter of the book has written objectives. The student should answer these objectives in order to understand the material fully. At the end of the chapters there are review questions the student should answer to help assess the student’s grasp of the chapter content. The back of the chapter also includes a summary chart of the chapter to help the student recall the important subject matter.

Student Due Process
Students who believe they have been unfairly evaluated must:
Step 1: Attempt to resolve the difficulty with the faculty member.

Step 2: If the dispute cannot be resolved in Step 1, the student may within 5 school days appeal to the program director stating the evidence for the continued dispute in writing.

Step 3: If still unresolved a written complainant, evidence, and reason for the dissatisfaction must be submitted to the Assistant Dean of the College of Health Sciences. The Assistant Dean will call upon the Due Process Committee to review and make recommendations to the Assistant Dean based on statements, written evidence, and interviews with all parties involved.

Step 4: If the matter is still not settled, the complainant will notify the Dean, within five (5) school days. The Dean will then pursue the matter with the Vice President for Student Affairs

The process will continue until the matter is resolved.

Part One and Three of the textbook (chapters 1 - 5, 14 – 16) are the chapters on Hematology methods. The methods will be discussed mainly in the laboratory (CLSC 3257) however; the student will be required to know the material from these chapters for the lecture class. Students need to be aware that this is a comprehensive course. The information in previous chapters we have covered and laboratory procedures will be built upon and tested over the information.

---

**Hematology TENTATIVE COURSE SCHEDULE**

<table>
<thead>
<tr>
<th>DATE</th>
<th>Topic to be covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 24</td>
<td>Overview of Hematology &amp; Hematopoiesis</td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>Aug 26</td>
<td>Bone Marrow / Red Blood Cell Structure &amp; function</td>
</tr>
<tr>
<td>Aug 31</td>
<td>Erythrocyte structure &amp; function, hemoglobin</td>
</tr>
<tr>
<td>Sep 2</td>
<td>Erythrocyte structure &amp; function</td>
</tr>
<tr>
<td><strong>Sep 7</strong></td>
<td><strong>Labor Day NO CLASS</strong></td>
</tr>
<tr>
<td>Sep 9</td>
<td>Anemia: Diagnosis and Clinical Considerations (19)</td>
</tr>
<tr>
<td>Sep 14</td>
<td>Evaluation of Cell Morphology / corpuscular constants</td>
</tr>
<tr>
<td><strong>Sep 16</strong></td>
<td><strong>EXAM 1 (Chapters 6–10, 14, 17, &amp; 19)</strong></td>
</tr>
<tr>
<td>Sep 21</td>
<td>Iron Metabolism</td>
</tr>
<tr>
<td>Sep 23</td>
<td>Hypochromic anemias / Fe deficiency</td>
</tr>
<tr>
<td>Sep 28</td>
<td>Hypochromic anemias</td>
</tr>
<tr>
<td>Sep 30</td>
<td>Megaloblastic anemia</td>
</tr>
<tr>
<td>Oct 5</td>
<td>Megaloblastic anemia</td>
</tr>
<tr>
<td><strong>Oct 7</strong></td>
<td><strong>EXAM 2 (chapters 6 - 11, 14, 17- 21)</strong></td>
</tr>
<tr>
<td>Oct 12</td>
<td>Aplastic Anemia etc</td>
</tr>
<tr>
<td>Oct 14</td>
<td>Aplastic Anemia etc –</td>
</tr>
<tr>
<td>Oct 19</td>
<td>Hemolytic anemia: Intracorpuscular defects: Hereditary defects of membrane</td>
</tr>
<tr>
<td>Oct 21</td>
<td>Hemolytic anemia: Intracorpuscular defects: Hereditary defects of membrane</td>
</tr>
<tr>
<td>Oct 26</td>
<td>Hemolytic anemia: Intracorpuscular defects: Hereditary enzyme deficiencies</td>
</tr>
<tr>
<td>Oct 28</td>
<td>Hemolytic anemia: Intracorpuscular defects: Hereditary enzyme deficiencies</td>
</tr>
<tr>
<td>Nov 2</td>
<td>Principles of Automation</td>
</tr>
<tr>
<td><strong>Nov 4</strong></td>
<td><strong>EXAM 3 (chapters 6 - 11, 14 – 17, 19 -24)</strong></td>
</tr>
<tr>
<td>Nov 9</td>
<td>Hemolytic anemia: Intracorpuscular defects: The Hemoglobinopathies</td>
</tr>
<tr>
<td>Nov 11</td>
<td>Hemolytic anemia: Intracorpuscular defects: The Hemoglobinopathies</td>
</tr>
<tr>
<td>Nov 16</td>
<td>Hemolytic anemia: Intracorpuscular defects: Thalassemia Nov 18</td>
</tr>
<tr>
<td>Nov 18</td>
<td>Hemolytic anemia Extracorpuscular defects</td>
</tr>
<tr>
<td>Nov 23</td>
<td>Hemolytic anemia Extracorpuscular defects</td>
</tr>
<tr>
<td>Nov 25</td>
<td>Hypoproliferative anemia</td>
</tr>
<tr>
<td>Nov 30</td>
<td>Quality Management, Quality Assurance and Quality Control</td>
</tr>
<tr>
<td>Dec 2</td>
<td>EXAM 4 (chapters 6 - 11, 14 – 17, 19 - 28)</td>
</tr>
<tr>
<td><strong>DEC 11</strong></td>
<td><strong>Comprehensive final 9-12</strong></td>
</tr>
</tbody>
</table>

**MLS Hematology cognitive objective covered in Hematology I, Hematology I Laboratory and Hematology II.** **Psycomotor objective performed in Preceptroship I and or II.**

Upon completion of this course, the student should be able to: Define, discuss, explain, identify and perform ...
Normal hematopoietic system Hematology I, Lab and Preceptorship

Define hematopoiesis Level 1
Theory of pluripotent stem cell development
Stem cell kinetics: Generative cell cycle
Hematopoietic inductive environment of regulatory growth factors and inhibitors
Apoptosis

Identify phases and site of origin for cellular development of active hematopoietic tissue in embryo and fetus Level 1
- Yolk sac
- Mesoblastic phase
- Hepatic phase (extramedullary)
- Medullary/myeloid phase

Identify phases and site of origin for cellular development of active hematopoietic tissue in infant and young child Level 1
- All red marrow spaces (all cell lines)
- Thymus fully developed (T lymphs)
- Secondary lymphoid tissue (B-cell, T-cell and NK-cell)

Identify phases and site of origin for cellular development of active hematopoietic tissue in adult Level 1
- Red marrow (axial skeleton and proximal ends of long bones)
- Primary and secondary lymphoid tissue (B-cell, T-cell and NK-cell)

Explain the role of other organ systems in hematopoiesis Level 2
- Mononuclear phagocyte system
- Spleen (Structure, blood flow, function)
- Liver (Structure, blood flow, function)
- Lymph nodes (Structure, blood flow, function)
- Thymus (Structure, blood flow, function)

State the physical findings commonly present in hematologic disease Level 2
- Splenomegaly
- Hypersplenism
- Hepatosplenomegaly
- Lymphadenopathy

Bone Marrow Tissue Hematology I, Lab and Preceptorship

List indications for performing bone marrow examination Level 1

Describe bone marrow collection techniques Level 1
- Aspiration
- Core biopsy
Describe key terms and apply concepts used to assess bone marrow structure and function

- Myeloid to erythroid ratio (M:E)
- Erythropoiesis
- Granulopoiesis
- Megakaryopoiesis
- Non-hematopoietic cells
- Cellularity: fat (yellow marrow) to cell (red marrow) ratio
- Aplastic marrow
- Hypoplastic marrow
- Hyperplastic marrow

Describe concepts related to the assessment of iron stores and sideroblast

- Population in the bone marrow
  - Type I
  - Type II
  - Type III

Perform differential count on normal bone marrow specimens

Distinguish between normal and abnormal hematopoietic elements found within the peripheral blood

Correlate bone marrow findings with peripheral blood evaluation

Prepare peripheral blood for routine hematologic procedure and smear analysis

Determine specimen acceptability

List appropriate anticoagulants and mechanism of anticoagulation

Identify acceptable ratio of anticoagulant to blood for specimens obtained from venipuncture and skin puncture

List reasons for rejecting specimens

Stain smears using Romanowsky dyes and techniques according to established procedures

- Manual, Automated

List and define components of stain and explain the principle

Judge the acceptability of blood smears through microscopic evaluation and established criteria

- Random distribution of cells
- Good stain quality
- Absence of artifact
Troubleshoot staining problems Level 3

Correlate peripheral blood evaluation with automated cell analysis Level 3

Enumerate and morphologically evaluate blood cells on Romanowsky stained smears Level 2

**Erythropoiesis Hematology I, Lab and Preceptorship**

Describe the distinctive features used to characterize developing cells Level 1

- Overall cell diameter or volume
- Nucleus (diameter or volume, relative diameter or volume, staining reaction, chromatin pattern, presence or absence of nucleoli)
- Cytoplasm (relative amount, staining reaction)
- Nuclear:cytoplasmic ratio

List the maturation sequence of developing erythrocytes given Romanowsky stained smears, electronic images or other visual means of representation of blood and bone marrow Level 1

Distinguish nucleated erythrocyte precursors from other hematopoietic elements Level 2

Categorize red cells Level 2

- Diameter or volume
- Shape
- Color
- Inclusions
- Distribution patterns

Describe nutritional and regulatory factors associated with erythropoiesis Level 2

- Erythropoietin (EPO)
- Iron
- Vitamins (B₁₂ / folate)

List hormones associated with erythropoiesis Level 1

- Estrogen/Androgens/Thyroxine/Growth hormone

Identify and discuss components of the mature red cell that are essential for survival and function Level 2

- Membrane composition
  - Lipids/Proteins/Skeletal proteins
- Membrane Function
  - Maintain RBC shape, deformability, and permeability
  - Support system for surface antigens
  - Transport and exchange of gases and ions (cationic pumps)

Describe metabolic pathways for maintenance of cell function Level 1

- Embden-Meyerhof/glycolytic
Hexose monophosphate shunt
Methemoglobin reductase
Luebering-Rapoport

**Erythrocytic Hemoglobin** *Hematology I, Lab and Preceptorship*

Summarize the mechanisms by which normal hemoglobin is structured and synthesized in the developing red cell Iron transport, uptake, and supply Protoporphyrin IX (heme) formation
- Globin synthesis and genetic control (Chromosome 11 and 16)
- Embryonic hemoglobins (Gower I, Gower II, Portland)
- Adult hemoglobins (Hb A, Hb F, Hb A2)

Describe normal hemoglobin-oxygen function using the oxygen dissociation curve (ODC)

Identify the effect various conditions can have on the oxygen dissociation curve
- pH (Bohr effect)
- Temperature
- CO₂
- 2,3-DPG (2,3-BPG)
- Hb S,F and other variants

Interpret the effect of various factors on the concentration of hemoglobin
- Age and gender
- Pregnancy
- Altitude
- Smoking
- Associated disease
- Altered hemoglobin derivatives
  (carboxyhemoglobin/methemoglobin/sulfhemoglobin)

**Erythrocytic Catabolism** *Hematology I, Lab and Preceptorship*

Summarize the mechanism by which red cells are catabolized

Identify phases (extravascular, intravascular)

Trace the basic steps associated with each phase

Define terms associated with red cell destruction
- Biliverdin
- Bilirubin (unconjugated/conjugated)
- Urobilinogen
- Urobilin
- Hemoglobin dimers
- Haptoglobin
- Hemopexin
- Hemoglobinemia
- Hemoglobinuria
- Hemosiderinuria
- Methemalbumin
Erythrocyte Evaluation Hematology I, Lab and Preceptorship

Describe procedures to evaluate erythrocytes and their physical properties using patient blood and quality control samples Level 1

Perform procedures to evaluate erythrocytes and their physical properties using patient blood and quality control samples Level 2

State the clinical utility of histogram review in erythrocyte evaluation Level 1

Determine if results are in accordance with prescribed criteria for accuracy and precision Level 3

Discuss automated hemogram parameters used for erythrocyte evaluation Level 1

Hemoglobin
Hematocrit
Mean cell volume (MCV)
Mean cell hemoglobin (MCH)
Mean cell hemoglobin concentration (MCHC)
Red cell distribution width (RDW)

Calculate red blood cell indices when provided appropriate data Level 2

State the principles of method analysis for hemoglobin determination Level 1

Hemoglobin measured at the point-of-care
Cyanmethemoglobin method
Other instrument methods for hemoglobin

Perform erythrocyte sedimentation rates Level 2

Wintrobe
Westergren and its modifications
Automated

Perform standard reticulocyte assays Level 2

Supravital smear method with Miller disc
Supravital smear method without Miller disc
Automated methods

Perform and interpret calculations associated with reticulocyte assays Level 3

Corrected
Absolute
Production index (RPI)
Reticulocyte hemoglobin concentration
Reticulocyte mean volume
Immature reticulocyte fraction (IRF) or reticulated hemoglobin content (CHr)
Determine the appropriate area of a peripheral blood smear to evaluate red blood cell morphology Level 2

Distinguish between normal and abnormal red blood cell morphology Level 2

List red blood cell count and indices reference values that account for variations in gender and age Level 1

Correlate automated hemogram parameters and calculated indices with each other and with peripheral smear exam results Level 3

Calibrate and perform preventive maintenance on instruments used to evaluate erythrocytes and their physical properties Level 2

Recognize and troubleshoot pre-analytical (pre-examination), analytical (examination), and post-analytical (post examination) causes of problems or unexpected results Level 3

Take corrective action to resolve unexpected results and/or events on instruments used to evaluate erythrocytes Level 3

Make decisions to recommend appropriate follow-up to prevent unexpected results and/or events from reoccurring Level 3

**Leukopoiesis Hematology II, Lab and Preceptorship**

State reference values that reflect variations in gender and age for the leukocyte Level 1 counts in peripheral blood
- Total leukocyte count
- Relative and absolute values for neutrophil, lymphocyte, eosinophil, basophil and monocyte counts

Identify factors that alter leukocyte values Level 1
- Physiologic variation
- Pathologic abnormalities

Enumerate and/or calculate leukocyte counts Level 2
- Relative values
- Absolute values

List morphologic features used to differentiate developing leukocytes Level 2
- Overall cell diameter or volume
Nucleus
Shape
Relative diameter
Nuclear to cytoplasmic ratio (N:C)
Staining reaction
Chromatin pattern
Presence or absence of nucleoli
Relative amount of cytoplasm
Cytoplasmic staining properties
Presence or absence of granules and staining reaction in cytoplasm

**Leukopoiesis: Granulocytes** *Hematology II, Lab and Preceptorship*

List the maturation sequence of neutrophils, eosinophils, and basophils

Level 1

Differentiate distinguishing morphology for stages of developing blood granulocytes

Level 2

Explain mechanisms that regulate and modulate granulopoiesis

Level 2

Regulatory growth factors and inhibitors
Kinetics (life span, circulation)
Biochemistry (granule content and surface membrane receptors, energy metabolism)

Explain the functions associated with granulocytes

Level 2

Chemotaxis
Phagocytosis and killing
Allergic response (eosinophils and basophils)
Host defense against parasites (eosinophils)
Hypersensitivity mediator (basophils and mast cells)

**Leukopoiesis: Monocytes and Lymphocytes** *Hematology II, Lab and Preceptorship*

Summarize structural and functional features that characterize monocytes and macrophages

Level 2

Kinetics (life span, circulation, tissue phase)
Function (phagocytosis, antigen-presenting cells (APC), pathogen presenting cells)

List the maturation sequence of monocytes and macrophages

Level 1

List the maturation sequence of lymphocytes

Level 1
Summarize structural and functional features that characterize lymphopoiesis

Sites of formation and production (Bone marrow, Thymus, Lymph nodes and secondary lymphoid tissue)
- Kinetics (Life span, Migration Function)
- Humoral immunity (B lymphocytes and subsets)
- Cell mediated immunity (T lymphocytes and subsets)
- Natural killing and antibody dependent cellular cytotoxicity

Recognize morphology of developing monocytes and macrophages

Recognize morphology of developing lymphocytes

Describe the use of monoclonal antibodies to differentiate lymphocytes by immunophenotype
- B-cell lymphocytes and subsets
- T-cell lymphocytes and subsets
- Natural Killer (NK) cells
- Plasma cells

**Leukocyte Evaluation Hematology II, Lab and Preceptorship**

Perform commonly used methods to evaluate leukocytes

State the principles and clinical utility of histogram/scatterplot review

Determine absolute and relative white cell counts on patient and control specimens using manual and automated methods in accordance with prescribed criteria for accuracy and precision

Calibrate and perform preventive maintenance on instruments used to evaluate white cells

Determine differential cell counting using automated methods

Evaluate white cell histograms and scatterplots for diagnostic and quality control purposes

Identify and classify normal and abnormal white cells on a properly stained Romanowsky blood smear

Correlate and verify automated cell counts and differentials with established criteria
Estimate the total white blood count from a smear Level 2

Correct leukocyte counts for the presence of nucleated red cells Level 2

Calibrate and perform preventive maintenance on instruments used to evaluate leukocytes and their physical properties

Recognize and troubleshoot pre-analytical (pre-examination), analytical (examination), and post-analytical (post examination) causes of problems or unexpected results Level 3

Take corrective action to resolve unexpected results and/or events on instruments used to evaluate leukocytes Level 3

Make decisions to recommend appropriate follow-up to prevent unexpected results and/or events from reoccurring Level 3

Nonmalignant Leukocyte Disorders Hematology II, Lab and Preceptorship

Explain the classification of nonmalignant leukocytic disorders Level 1
  Quantitative changes
  Qualitative changes

Compare and contrast absolute values with relative values Level 2
  Neutrophilia
  Neutropenia
  Eosinophilia
  Eosinopenia
  Basophilia

Associate quantitative and qualitative leukocyte disorders with expected results Level 1
  Bone marrow production and release
  Rate of entry into peripheral circulating pools
  Shifts between circulating and marginating pools
  Rate of exit into tissues

Identify morphologic changes in neutrophils that may accompany nonmalignant Level 2
  Neutrophilic disorders
    Shift to the left
    Toxic granulation
    Dohle bodies
    Vacuolization
    Leukemoid reaction
    Leukoerythroblastic reaction
Agranulocytosis
Hypossegmentation
Hypersegmentation

State characteristic abnormalities and clinical features for the qualitative/functional disorders of neutrophils
Pelger-Huet anomaly
Alder-Reilly anomaly
Chediak-Higashi anomaly
May-Hegglin anomaly
Chronic granulomatous disease (CGD)
Myeloperoxidase deficiency
Leukocyte adhesion deficiency

Describe qualitative and quantitative alterations of monocytes

Define monocytosis

Compare absolute monocyte values with relative values

Identify causes of monocytosis

Identify abnormal lipid accumulations within monocytes and macrophages

Identify causes of non-neoplastic disorders of lymphocytes and plasma cells

Define lymphopenia/lymphocytosis

Compare lymphocyte absolute values with relative values

Compare and contrast morphologic features of reactive lymphocytes and normal lymphocytes
Size
Nucleus
Cytoplasm
Heterogeneity

Differentiate between reactive and resting lymphocytes on Romanowsky stained smears

Identify the causes of reactive lymphocytosis

Red Blood Cell Disorders: Anemia Hematology I, Lab and Preceptorship
Define anemia

State the clinical signs and symptoms of anemia
  Hemoglobin
  Hematocrit
  Red blood cell count
  RBC indices
  Red cell distribution width (RDW)
  Peripheral smear
  Reticulocyte count
  Bone marrow evaluation

List the categories used in a morphological classification of the anemias

Describe the expected laboratory results seen in the various pathophysiologic classifications of anemias
  Decreased red cell production (Bone marrow failure, ineffective hematopoiesis, Myelophthsic)
  Increased red cell destruction, hemolytic processes
  Loss of red blood cells

Discuss the clinical utility of the RBC indices as relates to physiologic conditions

Explain sources of error of the red cell indices

Use the RBC indices as a quality control mechanism for assessing the validity of the erythrocyte count, hemoglobin, and hematocrit values

Define common terms used to describe red cell morphology
Stomatocyte
Basophilic stippling
Cabot rings
Heinz bodies
Howell-Jolly bodies
Malarial parasites
Pappenheimer bodies/siderotic granules
Hemoglobin crystals
Hemoglobin H

Describe the composition and morphology and list the possible pathologic conditions of various red blood cell inclusions

Basophilic stippling
Cabot rings
Heinz bodies
Howell-Jolly bodies
Malarial and other blood parasites
Pappenheimer bodies/siderotic granules
Hemoglobin crystals (C, S, SC, H inclusion bodies)

**Red Blood Cell Disorders: Erythrocytosis (Polycythemia)**

*Hematology I, Lab and Preceptorship*

Define polycythemia

Differentiate between absolute polycythemia and relative polycythemia

Compare and contrast secondary polycythemia, and relative erythrocytosis

- Etiology
- Clinical features
- Laboratory findings
- Prognosis

Describe changes in the bone marrow and peripheral blood with polycythemia vera

**Red Blood Cell Disorders: Hypochromic Anemias**

*Hematology I, Lab and Preceptorship*

Define hypochromic anemia

List the causes of hypochromic anemias

Discuss the etiology and pathophysiology of hypochromic anemias
Iron deficiency anemia
Sideroblastic anemia
Anemia of chronic disease
Hemochromatosis/ Hemosiderosis
Porphyrias
Thalassemia

Compare and contrast laboratory findings in iron deficiency anemia, anemia of chronic disease/inflammation and sideroblastic anemia

Serum ferritin
Serum iron
Transferrin/ Total Iron Binding Capacity (TIBC)
Percent transferrin saturation
Bone marrow evaluation for ringed sideroblasts
Free erythrocyte protoporphyrin (FEP)/zinc protoporphyrin (ZPP)
Transferrin receptor tests
Hepcidin

Outline a laboratory approach to the evaluation of a patient’s iron status

Red Blood Cell Disorders: Megaloblastic Anemias

Hematology I, Lab and Preceptorship

Discuss the absorption and metabolism of vitamin B\(_{12}\) and folate

Describe clinical features of megaloblastic anemia

Identify the hematologic abnormalities present in megaloblastic anemia

Peripheral blood changes
Bone marrow-morphological changes

Compare and contrast pernicious anemia to the other types of vitamin B\(_{12}\) deficiency

Outline a sequential approach to the differential diagnosis of megaloblastic anemia using the following laboratory procedures

Mean corpuscular volume (MCV)
Blood and bone marrow smear evaluation
Serum B\(_{12}\)
Serum folate
Red cell folate
Anti-intrinsic factor antibodies
Anti-parietal cell antibodies
Methylmalonic acid
Homocysteine

Differentiate nonmegaloblastic macrocytosis from megaloblastic anemia

Peripheral blood and bone marrow characteristics
- Serum vitamin B_{12} level
- Serum folate level
- Red cell folate level
- Reticulocyte findings


Hematology I, Lab and Preceptorship

 Define aplastic anemia

Identify common factors associated with the development

Describe the clinical features and pathophysiology
- Acquired aplastic anemia
- Fanconi’s anemia
- Congenital pure red blood cell aplasia
- Anemia caused by myelophthisis

Describe the laboratory findings
- Peripheral blood changes
- Bone marrow changes
- Other laboratory findings

Define Fanconi’s anemia

Describe the genetics and possible pathophysiology

Describe the laboratory findings
- Peripheral blood changes
- Bone marrow changes
- Other laboratory findings

Define pure red cell aplasia (Diamond-Blackfan anemia)

Describe the clinical features and pathophysiology

Describe the laboratory findings
- Peripheral blood changes
- Bone marrow changes
- Other laboratory findings
Define and differentiate Congenital dyserythropoietic anemias (types I, II, and III) Level 2

Describe the clinical features Level 1

Describe the laboratory findings Level 1

Define myelophthysis Level 1

Describe the clinical features Level 1

Describe the laboratory findings Level 1
  Peripheral blood changes
  Bone marrow changes
  Other laboratory findings

Red Blood Cell Disorders: Hemolytic Anemias

Hematology I, Lab and Preceptorship

Describe the etiology, pathophysiology, clinical features, and laboratory findings of red cell membrane defects Level 1
  Hereditary spherocytosis
  Hereditary elliptocytosis
  Paroxysmal nocturnal hemoglobinuria (PNH)
  Hereditary pyropoikilocytosis
  Hereditary acanthocytosis
  Hereditary stomatocytosis (hydrocytosis)
  Hereditary xerocytosis

Identify and correlate data from laboratory tests that are used to detect increased RBC destruction and production due to RBC membrane abnormalities Level 2

Discuss the principle of the Osmotic fragility test Level 1

Describe the clinical features Level 1
  Describe the laboratory findings Level 1
  Perform/observe the procedure Level 2
  Apply appropriate quality control procedures Level 2
  Evaluate results Level 3

Describe the utility of flow cytometry in assessing red cell membrane defects Level 2

Describe the etiology, pathophysiology, and clinical features of red cell Level 1
enzyme abnormalities
   Glucose-6-phosphate dehydrogenase (G6PD) deficiency
   Pyruvate kinase (PK) deficiency
   Methemoglobin reductase

Discuss the principles of G6PD assay, pyruvate kinase assay and staining for Heinz Bodies Level 1
Identify laboratory test results based upon Level 1
   Describe the laboratory findings Level 1
   Perform /observe the procedure Level 2
   Apply appropriate quality control procedures Level 2
   Evaluate results Level 3

Red Blood Cell Disorders: Hemoglobinopathies

Hematology I, Lab and Preceptorship

Define hemoglobinopathy Level 1

Distinguish between qualitative and quantitative hemoglobin defects Level 1

Describe clinical and laboratory findings of hemoglobinopathies Level 1
   Hb SS
   Hb AS
   Hb CC
   Hb AC
   Hb DD
   Hb EE
   Hb SC

Identify the amino acid substitutions associated with sickle cell anemia and hemoglobin C disease Level 1

Describe the physiologic abnormality associated with hemoglobin variants with altered oxygen affinity (Unstable hemoglobins, Methemoglobinemia) Level 1

Describe the hemoglobin gene defect in alpha and beta thalassemia Level 1

Define the hemoglobin defect in thalassemia Level 1

Describe the terminology associated with thalassemias Level 1
   Alpha thalassemia
      4 gene deletion
3 gene deletion (Hb H disease)
2 gene deletion
1 gene deletion

Beta thalassemia
- Beta-thalassemia major
- Beta-thalassemia intermedia
- Beta-thalassemia minor

Describe the clinical features associated with different gene combinations in alpha and beta thalassemia

Describe the pathophysiology of thalassemias
- Hemoglobin Lepore
- Delta-beta thalassemia
- Hb H
- Bart’s hemoglobin
- Hereditary persistence of fetal hemoglobin
- Hb Constant Spring

Identify the characteristic clinical and laboratory findings associated with thalassemia

Describe the peripheral blood morphology associated with different gene combinations in alpha and beta thalassemia

Discuss the principle of the solubility test for sickling hemoglobin
- Describe the laboratory findings
- Perform /observe the procedure
- Apply appropriate quality control procedures
- Evaluate results

Discuss the principles of hemoglobin electrophoresis (cellulose acetate, alkaline pH vs. citrate agar, acid pH)
- Describe the laboratory findings
- Perform /observe the procedure
- Apply appropriate quality control procedures
- Evaluate results

Discuss the separation of hemoglobin by capillary electrophoresis

Discuss the principles of hemoglobin quantification (HbA, HbA2, HbF)
- Describe the laboratory findings
Perform / observe the procedure Level 2
Apply appropriate quality control procedures Level 2
Evaluate results Level 2

Describe acid elution test (Kleihauer-Betke) or flow cytometry in regards to Hemoglobinopathies Level 1

Correlate screening test for sickling hemoglobin with peripheral blood morphology and electrophoretic patterns of hemoglobin Level 3

Identify the electrophoretic patterns (cellulose acetate, alkaline pH vs. citrate agar, acid pH) Hb F, Hb A, Hb S, Hb C, Hb D, Hb E, Hb A₂ Level 2

**Hemolytic Anemias Hematology I, Lab and Preceptorship**

**Hemolytic Anemias Hematology I, Lab and Preceptorship**

Identify mechanisms of immune hemolytic anemias Level 1

Define and describe the etiology and clinical features and laboratory findings of Alloimmune hemolytic anemias Level 1
- Acute hemolytic transfusion reaction
- Delayed hemolytic transfusion reaction
- Hemolytic disease of the newborn (HDN)

Define and describe the etiology and clinical features and laboratory findings of Autoimmune hemolytic anemias Level 1
- Warm autoimmune hemolytic anemia (WAIHA)
- Cold autoimmune hemolytic anemia
- Cold agglutinin syndrome (Idiopathic, Secondary)
- Paroxysmal cold hemoglobinuria

Identify mechanisms of drug-induced immune hemolytic anemia Level 1

Identify the etiology of nonimmune hemolytic anemia Level 1
- Infectious organisms
- Mechanical agents
- Chemicals

Describe the hematologic findings associated with nonimmune hemolytic anemias Level 1
- Malaria
- Babesiosis
- Bartonellosis
- Clostridium perfringens (welchii) infection
- Cardiac prosthetic devices
Microangiopathic hemolytic anemia
Chemicals and venoms
Thermal injury
Disseminated intravascular coagulation

**Acute Blood Loss Hematology I, Lab and Preceptorship**

Describe the etiology of anemia of acute blood loss Level 1

List the clinical symptoms of acute blood loss Level 1

Identify the laboratory findings of acute blood loss Level 1

**Anemias associated with systemic disorders Hematology I, Lab and Preceptorship**

Describe the clinical features and laboratory findings associated with nonhematologic disorders Level 1

Chronic disorders and inflammation
Connective tissue disorders
Malignant diseases
Renal disease
Liver disease
Alcoholism
Endocrine disease

**Neoplastic Disorders Hematology II, Lab and Preceptorship**

Define and list categories associated with Neoplastic Disorders of Leukocytes Level 1

Leukemias
Myelodysplastic syndromes
Myeloproliferative disorders
Lymphoproliferative disorders

Identify major systems used to classify neoplastic disorders of leukocytes Level 1

French, American-British (FAB) Cooperative Group
World Health Organization (WHO)

Observe and/or perform procedures, apply appropriate quality control procedures, Level 2 and interpret laboratory findings for laboratory procedures used in the identification, classification and differentiation of neoplastic disorders

Complete blood count
Hemograms
Scatterplots and histograms
Review the criteria used to classify nonmalignant leukocytic disorders Level 1
Quantitative changes
Qualitative changes (inherited, acquired)

Identify on Romanowsky stained smears, photographs, electronic images or other visual means of representation of morphologic changes in neutrophils that may accompany nonmalignant neutrophilic disorders Level 2
Shift to the left
Toxic granulation
Döhle bodies
Vacuolization
Leukemoid reaction
Leukoerythroblastic reaction
Agranulation, hypogranulation
Hypossegmentation
Hypersegmentation
Intracellular microorganisms

Compare and contrast the principles of various cytochemical stains and the cell lineages they react with Level 2
Myeloperoxidase
Sudan black B (SBB)
Esterases (specific substrate/non-specific substrate
Periodic-acid Schiff (PAS)
Leukocyte alkaline phosphatase (LAP)
Tartrate resistant acid phosphatase (TRAP)
Iron staining

Describe the use of various diagnostic techniques used to assess neoplastic disorders of blood and bone marrow cells Level 1
Immunophenotyping
Terminal deoxynucleotidyl transferase (TdT)
Monoclonal antibodies
myeloid from lymphoid
T and B cell immunophenotypes
Acute myelocytic leukemia (AML) subgroups cell lineages
Cytogenetics
Molecular genetics

Apply knowledge and skills in interpreting laboratory results and recognizing Level 3
clinical syndromes that are unique to the neoplasm

Read case studies of neoplastic disorders and apply knowledge and skills in interpreting laboratory results Level 3

**Acute Leukemias**  Hematology II, Lab and Preceptorship

Apply general criteria to classify leukemias Level 1
- Cell maturity (Acute/Chronic)
- Cell lineage (Myeloid /nonlymphoid)
- Lymphoid

Describe the clinical findings and laboratory results for leukemia Level 1

Compare the FAB with the WHO acute myeloid leukemia subgroups and apply diagnostic blood and bone marrow findings to the differential identification Level 3
- FAB classification
  - M0--acute myeloid leukemia with minimal differentiation
  - M1--acute myeloid leukemia without maturation
  - M2--acute myeloid leukemia with maturation
  - M3--acute promyelocytic leukemia
  - M4--acute myelomonocytic leukemia
  - M5--acute monoblastic leukemia
  - M6--acute erythroleukemia
  - M7--acute megakaryoblastic leukemia
- WHO classification
  - AML with recurrent genetic abnormalities
  - AML with myelodysplasia-related changes
  - Therapy-related myeloid neoplasms

List the WHO acute leukemia subgroups Level 1
- AML with recurrent genetic abnormalities
- AML with myelodysplasia-related changes
- Therapy-related myeloid neoplasms
- AML, not otherwise specified

Interpret findings from immunophenotypic, cytogenetic and molecular findings and apply to criteria used by WHO Level 3

Describe for each leukemia Level 1
- Clinical findings and symptoms
- Incidence and epidemiology
- Risk factors associated with the development of leukemia
Hereditary abnormalities
Environmental
Viral infections
Immunologic disorders

Identify the pathophysiology of leukemia
Stem cell clonality
Oncogene and tumor suppressor gene development

Describe the survival rates and prognosis

Describe the treatment options and correlation with hematologic complications
Chemotherapy
Bone marrow/stem cell transplant

Identify diagnostic findings on permanently stained blood and bone marrow smears, photographs, kodachromes, or electronic images by which the FAB cooperative group and WHO classify acute leukemia Morphology, number, and differentiation of blast and immature cells
Greater than 30%
Predominant cell type
Auer rods

Define the reactivity of leukemic cells with cytochemical stains

Apply diagnostic blood and bone marrow findings to the differential identification

Acute myeloid leukemia (AML)
Acute nonlymphocytic leukemia (ANLL)
M0--acute myelogenous with minimal differentiation
M1--acute myelogenous without maturation
M2--acute myelogenous with maturation
M3--acute promyelocytic leukemia
M3m--acute promyelocytic leukemia variant
M4--acute myelomonocytic leukemia
M4Eo--acute myelomonocytic leukemia variant
M5--acute monocytic leukemia
M5a--poorly differentiated
M5b--well differentiated
M6--acute erythroleukemia
M7--acute megakaryocytic leukemia
Acute lymphocytic leukemia (ALL): L1,L2,L3-Burkitt's

List the subgroups (WHO) and apply diagnostic blood, bone marrow, immunophenotype, cytogenetics and molecular findings to the differential identification of B lymphoblastic leukemia/lymphoma, not otherwise specified T lymphoblastic leukemia/lymphoma

Interpret findings from an immunologic workup to formulate an immunophenotypic classification for ALL applying to criteria used by WHO

B lineage
Early B precursors
"Common" CALLA (CD10) positive
Pre-B
T-cell lineage and early T precursor (pro-T, pre-T, cortical-T, medullary-T)
Precursor lymphoid neoplasms

List cytogenetic and molecular abnormalities commonly associated with the major acute leukemic subtypes

Myelodysplastic Syndromes (MDS) Hematology II, Lab and Preceptorship

Define and describe cellular features that characterize the MDS

Define and describe cellular features that characterize the MDS

Dyserythropoiesis
Dysgranulopoiesis
Dysmegakaryocytosis

List subgroups recognized by the World Health Organization (WHO) Cooperative Groups for the MDS classification and discuss the rationale for revisions to the classification

Refractory cytopenia with unilineage dysplasia (RCUD)
Refractory anemia (RA)
Refractory neutropenia (RN)
Refractory thrombocytopenia (RT)
Refractory anemia with ringed sideroblasts (RARS)
Refractory cytopenia with multilineage dysplasia (RCMD)
Refractory anemia with excess blasts (RAEB)
RAEB-1
RAEB-2
Myelodysplastic syndrome, unclassifiable (MDS-U)
Myelodysplastic syndrome with isolated del (5q)
List subgroups recognized by the French, American, and British (FAB) Cooperative Level 1 Group for the MDS classification
  - Refractory anemia (RA)
  - Refractory anemia with ringed sideroblast (RARS)
  - Refractory anemia with excess blast (RAEB)
  - Chronic myelomonocytic leukemia (CMML)
  - Refractory anemia with excess blasts in transition (RAEB-t)

Identify key morphologic features on permanently stained blood and bone marrow smears, photographs, electronic images or other visual means of representation  Level 2

Correlate the diagnostic blood and bone marrow findings to the differential identification  Level 3

Describe characteristics of MDS  Level 2
  - Median age of onset
  - Epidemiology
  - Chromosomal association with pathogenesis
  - Clinical course with associated hematologic changes
  - Treatment options
  - Prognosis

**Chronic Myeloproliferative Neoplasms**  Hematology II, Lab and Preceptorship

Classify Chronic Myeloproliferative Neoplasms by cell type  Level 1
  - Granulocytes--Chronic myelogenous/granulocytic leukemia (CML/CGL)
  - Erythrocytes--polycythemia vera (PV)
  - Megakaryocytes--essential thrombocytemia (ET)
  - Fibroblasts--agnogenic myeloid metaplasia (AMM)

List Chronic Myeloproliferative Neoplasms subtypes  Level 1
  - Chronic myelogenous leukemia (CML) BCR/ABL1 positive
  - Essential thrombocytemia (ET)
  - Primary myelofibrosis (PMF)
  - Chronic neutrophilic leukemia (CNL)
  - Chronic eosinophilic leukemia not otherwise specified (CEL, NOS)
  - Mastocytosis

List subgroups recognized by WHO for the myelodysplastic/myeloproliferative classification and discuss the rationale for the classification  Level 2
  - Chronic myelomonocytic leukemia (CMML)
CMML-1
CMML-2
Atypical chronic myeloid leukemia (aCML), BCR-ABL1 negative
Juvenile myelomonocytic leukemia (JMML)
MDS/MPN, unclassifiable

Discuss and compare features commonly shared Level 3
by Chronic Myeloproliferative Neoplasms
Clinical manifestations
Pathophysiologic mechanisms
Blood and bone marrow findings
Transitional forms between stages
Disease evolution with potential for blastic transformation

Identify key morphologic features on permanently stained blood and bone Level 2
marrow smears, photographs, kodachromes, or electronic images

Correlate diagnostic criteria to these findings for the differential identification Level 3
Chronic myelogenous leukemia (CML)
Leukocytosis with absolute neutrophilia and left shift maturation
Absolute basophilia and eosinophilia
Thrombocytosis
Bone marrow hypercellularity with granulocytic proliferation
Cytogenetic (karyotype): t(9;22)(q34;q11)
Molecular products: BCR/ABL fusion gene, fusion mRNA

Polycythemia vera (PV)
Increased red blood cell (RBC) mass
Leukocytosis with mild left shift maturation and basophilia
Thrombocytosis
Bone marrow hypercellularity with all cell lines increased
Molecular studies (JAK2)
Red cell morphology (Initial phase, “Spent” phase)

Essential thrombocythemia (ET)
Marked thrombocytosis with platelet aggregates and abnormal forms
Megakaryocytic hyperplasia of bone marrow
Molecular studies

Primary myelofibrosis (PMF)
Leukoeoerythroblastosis with teardrop-shaped red cells
Leukocytosis with left shift maturation to occasional immature myeloid cell
Bone marrow fibrosis and relationship to megakaryocytic hyperplasia
Molecular studies
Identify treatment options and recognize effects on peripheral blood white cells, Level 3
Chemotherapy
Splenic irradiation/splenectomy
Phlebotomy
Bone marrow or stem cell transplant
Targeted molecular therapy

**Chronic Lymphoproliferative Disorders** Hematology I, Lab and Preceptorship
Name and classify the chronic lymphoid leukemias by T and B cell lineage Level 1
Chronic lymphocytic leukemia (CLL)
B-cell prolymphocytic leukemia (PLL)
Plasma cell neoplasms
Hairy cell leukemia (HCL)
Adult T-cell leukemia
Sézary syndrome
Extranodal marginal zone lymphoma or mucosa-associated lymphoid tissue (MALT lymphoma)
Follicular lymphoma
Mantel cell lymphoma
Diffuse large B-cell lymphoma, not otherwise specified
Burkitt lymphoma

Identify key morphologic features on permanently stained blood and bone marrow smears, photographs, kodachromes, or electronic images Level 2
List diagnostic features CLL Level 1
Median age of onset
Symptoms and clinical findings
Blood and bone marrow findings
Peripheral blood absolute lymphocytosis
Leukemic cell line of mature, small lymphocytes with monotonous morphology and smudge/basket cells
Immunophenotypic cell surface markers and clonality
Bone marrow lymphocytosis

Recognize and describe features associated with aggressive forms of the disease Level 1
Autoimmune hemolytic anemia (AIHA)
Chromosome and/or molecular abnormalities
Richter’s syndrome
Immunophenotypic cell surface markers
Name and compare systems used to stage disease severity and progress  
Modified Rai  
Binet  

Discuss the diagnostic features of PLL  
Median age of onset and gender  
Clinical finding of severe splenomegaly  
Blood and bone marrow findings  
Markedly elevated white count with absolute lymphocytosis  
White cell differential predominantly of prolymphocytes (greater than 55%)  
Immunophenotypic profile  
Chromosome and/or molecular

Discuss the diagnostic features of HCL  
Median age of onset and gender  
Clinical finding of severe splenomegaly  
Blood and bone marrow findings  
Pancytopenia  
Morphology: leukemic cell line of “hairy” cells  
Immunophenotypic B-cell profile  
“Dry” tap; marrow fibrosis and infiltrates

Discuss treatment options  
Splenectomy  
Other drugs  
Describe laboratory findings seen in the variant form of HCL

List diagnostic features of Adult T-cell leukemia  
T-cell large granular lymphocytic leukemia (LGL)  
Human T-cell lymphotropic virus-1 (HTLV-1)  
Endemic areas

Apply diagnostic criteria to blood and bone marrow findings for the differential identification of Adult T-cell leukemia  
Lymphoid cell line of small to large cells with cloverleaf/knotty nucleus  
Immunophenotypic T cell associated profile

Identify key morphologic features on permanently stained blood and bone marrow smears, photographs, electronic images or other means of visual representation
List diagnostic features of Sézary syndrome
Relationship to mycosis fungoides
Clinical findings--skin involvement

Review blood and bone marrow findings of Sézary syndrome
Absolute lymphocytosis
Morphology: lymphoid cell line of medium cells with cerebriform nucleus
Immunophenotypic T cell associated profile

**Lymphoma**  *Hematology II, Lab and Preceptorship*
Define lymphoma and generally classify using key terminology
Hodgkin
Reed-Sternberg cells
Rye modified cells
Non-Hodgkin

Outline a multidisciplinary workup and list laboratory findings used to diagnose and stage Hodgkin lymphoma
Complete blood count (CBC)
Liver function tests
Renal function tests
Blood and bone marrow findings of Hodgkin’s lymphoma
Radiologic studies
Physical examination
Lymph node biopsy
Recognize key morphologic features and correlate with diagnostic criteria for the Level 3 presence of lymphoma cells

**Plasma Cell Disorders**  *Hematology II, Lab and Preceptorship*
Name disorders based on proliferation of plasma cells and abnormal production of immunoglobulins

Discuss classification based on proliferation of plasma cells and abnormal production of immunoglobulins
Multiple myeloma
Waldenström’s macroglobulinemia
Plasma cell leukemia (PCL)
Heavy-chain disease
Monoclonal gammopathy of undetermined significance (MGUS)

Compare and contrast classification based on proliferation of plasma cells
and abnormal production of immunoglobulins

Compare and contrast the following for plasma cell disorders

Pathophysiology
Clinical findings
Laboratory findings
Complete blood count (CBC) and peripheral smear review
Bone marrow biopsy including immunophenotypic cell markers
Blood and urine protein electrophoresis and immunoelectrophoresis
Quantitative immunoglobulins
Chemistry panels—blood urea nitrogen, creatinine, calcium, lactic dehydrogenase
Serum viscosity
Beta-2-microglobulin
Radiologic studies of bones

Identify key morphologic features for plasma cell disorders on permanently stained blood and bone marrow smears, photographs, electronic images or other visual means of representation

Thrombopoiesis/megakaryopoiesis  

List the maturation sequence for stages of developing megakaryocytes and platelets

Cite reference values for absolute platelet counts in the peripheral blood

Correlate quantitative variations with disease manifestations

Thrombocytopenia
Thrombocytosis

Correlate functional or qualitative variations of platelets with disease manifestations

Perform absolute platelet counts on patient and control specimens using manual and automated methods in accord with prescribed criteria for accuracy and precision

State the principles of method analysis and histogram/scatterplot review

Compare absolute count with those estimated from blood smear exam
Identify platelets and platelet morphologic variations on a properly prepared Level 2 Romanowsky stained blood smear and/or recognize factors that alter hemogram results
- Platelet satellitism
- Platelet aggregates
- Giant platelets
- Cell fragments
- Extreme microcytosis

Evaluate platelet histograms and scatterplots for diagnostic and quality control Level 3 purposes
- Platelet satellitism
- Platelet aggregates
- Giant platelets
- Cell fragments
- Extreme microcytosis
- Agranular and hypogranular platelets

Recognize and troubleshoot pre-analytical (pre-examination), analytical Level 3 (examination) and post-analytical (post-examination) causes for problems or unexpected results

Make decisions to recommend appropriate follow-up to prevent unexpected Level 3 results and/or events from reoccurring

Calibrate and perform preventive maintenance on instruments used to Level 2 evaluate platelets

**Hemostasis/ Coagulation** Hematology II, Lab and Preceptorship

Define hemostasis Level 1

Explain the general interaction of systems involved in maintaining hemostasis Level 1

Of systems involved in maintaining hemostasis describe how changes in one Level 2 effect the other
- Vasculature
- Platelets
- Plasma coagulation factors
- Fibrinolysis

Differentiate between primary and secondary hemostasis Level 3
Vascular Hematology II, Lab and Preceptorship

Explain the functions of the vascular system in maintaining hemostasis Level 1

Describe metabolic functions of the endothelium and substances contributing to the thromboresistance properties of endothelium
- Heparan sulfate
- Thrombomodulin
- Tissue plasminogen activator
- Prostacyclin (PGI2)
- Tissue factor pathway inhibitor

Platelets Hematology II, Lab and Preceptorship

Discuss the production of platelets Level 1

State the average time in circulation, normal peripheral count, and total body distribution of platelets Level 1

Describe the ultrastructural components of a platelet Level 1
- Alpha granules
- Dense bodies
- Lysomes
- Microtubules
- Open canalicular system
- Platelet membrane
- Glycocalyx

Discuss the physiological role of platelets in hemostasis Level 1
- Platelet plug formation
- Maintaining normal vascular integrity

Describe the series of morphologic changes that occur in platelets following physiologic stimulation Level 1
- Adhesion
- Aggregation
- Activation

Discuss the effect of aspirin on platelet function Level 1
- Biochemical mechanism
- Duration of the effect

Discuss principle for platelet aggregometry and platelet function analyzers Level 2
Interpret results of platelet function assay tests  
Significance in terms of platelet function  
Associated abnormal conditions  
Sources of error  

Discuss the principle and clinical significance of platelet aggregation  

Describe the principle of light transmittance, whole blood impedance and lumiaggregometry  

Perform the procedure  

Describe the procedure  

Describe appropriate quality control procedures and sources of error  

Interpret results and clinical significance  

**Plasma coagulation factors**  

*Hematology II, Lab and Preceptorship*

Define the coagulation factors  
Roman numerals  
Common names  
Synonyms  

Discuss the physiological role of the coagulation phase within the hemostatic process  

Discuss characteristics of the coagulation factors  
Contact group  
Prothrombin group  
Fibrinogen group  

List the vitamin K-dependent factors  

Compare and contrast the plasma-based (in vitro) and cell-based (in vivo) mechanisms of coagulation  
Plasma-based (in vitro) mechanism  
Intrinsic  
Extrinsic  
Common  
Cell-based (physiologic, in vivo) mechanism
Initiation
Amplification
Propagation

Identify substances that are contact activators in vitro Level 1

Summarize the interaction of the coagulation system with the vascular and platelet systems to form a hemostatic plug Level 2

Describe the physiologic controls of hemostasis Level 1
- Blood flow
- Feedback inhibition
- Liver clearance

Identify the inhibitors of hemostasis Level 2
- Antithrombin III
- Heparin cofactor II
- Tissue factor pathway inhibitor (TFPI)
- Protein C
- Protein S
- Alpha-2-macroglobulin
- Alpha-1-antitrypsin
- C1 inactivator
- Z-dependent protease inhibitor (ZPI)

Identify the special precautions that must be taken in the collection and subsequent handling of specimens for coagulation testing Level 1
- Anticoagulant
- Ratio of blood to anticoagulant
- Patient hematocrit values
- Centrifugation
- Storage conditions including temperature
- Transport
- Phlebotomy procedure
  (e.g., time tourniquet is on arm, needle gauge, probing, etc.)

Identify and describe tests that are used to monitor the coagulation phase of Hemostasis Level 1

Discuss the principle and clinical significance of the Prothrombin time test Level 1
- Perform the procedure (performed in preceptorship) Level 2
Describe the procedure
Describe appropriate quality control procedures and sources of error
Interpret results
Describe the International Normalized Ratio (INR)
Calculate an INR given the international sensitivity index of the thromboplastin

Discuss the principle and clinical significance of the Activated partial thromboplastin time
Perform the procedure (performed in preceptorship)
Describe the procedure
Describe appropriate quality control procedures and sources of error
Interpret results
Describe interferences and sources of error

Discuss the principle and clinical significance of the Activated clotting time
Perform the procedure (performed in preceptorship)
Describe the procedure
Describe appropriate quality control procedures and sources of error
Interpret results
Describe interferences and sources of error

Discuss the principle and clinical significance of the Thrombin clotting time
Perform the procedure (performed in preceptorship)
Describe the procedure
Describe appropriate quality control procedures and sources of error
Interpret results
Describe interferences and sources of error

Discuss the principle and clinical significance of the Fibrinogen assay
Perform the procedure (performed in preceptorship)
Describe the procedure
Describe appropriate quality control procedures and sources of error
Interpret results
Describe interferences and sources of error

Discuss the principle and clinical significance of Factor assays
Perform the procedure (performed in preceptorship)
Describe the procedure
Describe appropriate quality control procedures and sources of error
Interpret results Level 3
Describe interferences and sources of error Level 1

Identify technical conditions that cause false coagulation testing results Level 1

**Fibrinolytic system**  
*Hematology II, Lab and Preceptorship*
Define fibrinolysis Level 1
Discuss the physiological role of the fibrinolytic system Level 1
Identify the major components of the fibrinolytic system Level 1
Discuss the mechanisms of the activation of plasminogen Level 1
  - Intrinsic activators
  - Extrinsic activators
  - Exogenous activators
List the major fragments of fibrinogen degradation Level 1
Explain the role and clinical significance of physiologic controls Level 1
  - Alpha-2-antiplasmin
  - Alpha-2-macroglobulin
  - Plasminogen activator inhibitors (PAI)
Identify and describe laboratory procedures that are used to evaluate Level 1
the fibrinolytic system

Discuss the principle and clinical significance of the FDP assay Level 1
  Perform the procedure (performed in preceptorship) Level 2
  Describe the procedure Level 2
  Describe appropriate quality control procedures and sources of error Level 1
  Interpret results Level 3

Discuss the principle and clinical significance of the D-Dimer Assay Level 1
  Perform the procedure (performed in preceptorship) Level 2
  Describe the procedure Level 2
  Describe appropriate quality control procedures and sources of error Level 1
  Interpret results Level 3

Identify technical conditions that cause false coagulation testing results Level 1
with or without established protocol

**Disorders of primary hemostasis**  
*Hematology II, Lab and Preceptorship*

Differentiate between disorders of the vasculature Level 2
  - Acquired purpura
Henoch-Schölein purpura
Hereditary hemorrhagic telangiectasia
Ehlers-Danlos syndrome
Pseudoxanthoma elasticum

Define the following terms associated with hemostasis disorders Level 1
Thrombocytopenia
Thrombocytosis
Thrombocythemia

Describe the etiology, pathophysiology, clinical features, and laboratory findings of quantitative defects of platelets Level 3
Idiopathic thrombocytopenic purpura
Autoimmune thrombotic thrombocytopenic purpura
Post-transfusion purpura
Disseminated intravascular coagulation
Hemolytic uremic syndrome
MYH9 inherited thrombocytopenias, e.g. May-Hegglin anomaly
Wiscott Aldrich anomaly
Neonatal alloimmune thrombocytopenia
HELLP syndrome
Heparin-induced thrombocytopenia
Drug-induced immune thrombocytopenia
Myeloproliferative disorders
Secondary (reactive) conditions

Describe the etiology, pathophysiology, clinical features, and laboratory findings of qualitative defects of platelets Level 3
von Willebrand’s disease
Bernard-Soulier syndrome
Glanzmann’s thrombasthenia
Storage pool deficiencies
Acquired platelet function disorders

Disorders of secondary hemostasis Hematology II, Lab and Preceptorship

Describe the inheritance pattern, pathophysiology, clinical features, and laboratory findings Level 1
Factor I deficiency
Factor II deficiency
Factor V deficiency
Factor V Leiden
Factor VII deficiency
Factor VIII deficiency (Hemophilia A)
Factor IX deficiency (Hemophilia B)
Factor X deficiency
Factor XI deficiency
Factor XII deficiency
Factor XIII deficiency
Prekallikrein deficiency
High-molecular-weight kininogen deficiency
von Willebrand’s disease
Alpha-2-antiplasmin deficiency
Antithrombin III deficiency
Heparin co-factor II deficiency
Protein C deficiency
Protein S deficiency
Plasminogen deficiency
Homocystinemia/homocystinuria

Describe clinical features and laboratory findings of acquired coagulation Level 1 disorders
- Vitamin K deficiency
- Liver disease
- Renal disease

Describe the significance and clinical implications of the development of circulating anticoagulants Level 1
- Specific factor inhibitors
- Nonspecific factor inhibitors
- Global inhibitors

Identify and describe laboratory procedures that are used to evaluate circulating anticoagulants or inhibitors Level 1

Discuss the principle and clinical significance of Correction study using normal plasma Level 1
- Perform the procedure (performed in preceptorship) Level 2
- Describe the procedure Level 2
- Describe appropriate quality control procedures and sources of error Level 1
- Interpret results Level 3
Discuss the principle and clinical significance of APTT screening with moderate-high LA responsive reagent (LA-sensitive, low phospholipid)
- Perform the procedure (performed in preceptorship)
- Describe the procedure
- Describe appropriate quality control procedures and sources of error
- Interpret results

Discuss the principle and clinical significance of the Dilute Russell viper venom time (DRVVT)
- Perform the procedure (performed in preceptorship)
- Describe the procedure
- Describe appropriate quality control procedures and sources of error
- Interpret results

Discuss the principle and clinical significance of the Low-phospholipid (LA-sensitive) vs. high-phospholipid APTT
- Perform the procedure (performed in preceptorship)
- Describe the procedure
- Describe appropriate quality control procedures and sources of error
- Interpret results

Discuss the principle and clinical significance of the Platelet neutralization procedure
- Perform the procedure (performed in preceptorship)
- Describe the procedure
- Describe appropriate quality control procedures and sources of error
- Interpret results

Outline a protocol to follow when investigating a patient with an unknown bleeding disorder
- Factor assays with dilutions for detection of nonparallel results
- Bethesda titer for factor VIII or IX inhibitors
- Describe interferences and sources of error

Disorders of fibrinolysis Hematology II, Lab and Preceptorship
Differentiate between primary and secondary fibrinolysis
Define disseminated intravascular coagulation (DIC)  Level 1

Identify mechanisms by which clotting is initiated during DIC  Level 1

Describe the effect of DIC on laboratory procedures  Level 1
- Prothrombin time
- Activated partial thromboplastin time
- Thrombin clotting time
- Platelet count
- Fibrinogen
- Fibrin/fibrinogen degradation products (FDP)
- D-dimer
- Blood smear

Describe conditions that are predisposing to recurrent thrombosis  Level 1
- Antithrombin III deficiency
- Heparin cofactor II deficiency
- Primary antiphospholipid antibody syndrome
- Protein C deficiency
- Protein S deficiency
- Activated Protein C resistance
- Prothrombin gene mutation (G20210A)
- Hyperhomocystinemia
- Acquired risk factors to thrombophilia (e.g., age, malignancies, including leukemias, chronic inflammation, surgery, immobilization, obesity, pregnancy, hormone replacement therapy, oral contraceptives, PNH, autoimmune disorders)

Describe laboratory tests for antithrombin III, protein C, and protein S comparing activity vs. antigen techniques  Level 1
- Perform the procedure  (performed in preceptorship)  Level 2
- Describe the procedure  Level 2
- Describe appropriate quality control procedures and sources of error  Level 1
- Interpret results  Level 3

**Anticoagulant therapy Hematology II, Lab and Preceptorship**  Level 1
- Explain the action of anticoagulant therapy
- Vitamin K Reductase inhibitors
- Direct acting oral anticoagulants
- Heparin high/low molecular weight
- Antiplatelet agents
Identify laboratory tests used to monitor anticoagulant therapy, indicate therapeutic intervals and sources of error and discuss emerging assays

- Oral anticoagulant therapy (warfarin)
- Vitamin K Reductase inhibitors
- Direct acting oral anticoagulants
  - Oral direct Xa inhibitors; anti-Xa
- Heparin high/low molecular weight
  - Low molecular weight heparin; chromogenic anti-Xa
  - Unfractionated heparin; PTT and chromogenic anti-Xa
  - Pentasaccharide, e.g., fondaparinux sodium (chromogenic anti-Xa)
- Direct thrombin inhibitors; APTT, ecarin clotting time, dilute thrombin assay
- Antiplatelet agents; platelet aggregometry
  - Aspirin
  - Thienopyridines: Clopidogrel, prasugrel
  - Glycoprotein IIbIIIa inhibitors

**Instrumentation**  
**Hematology I, Lab and Preceptorship**

Identify basic concepts of electrical impedance, optical detection, radio frequency, Level 1 and light scatter plus cytochemical stain systems

- Discuss the principle  
- List components  
- Describe operation  
- Perform Analysis (performed in preceptorship)  
- Describe maintenance and troubleshooting  
- Perform maintenance/corrective action (performed in preceptorship)  

Identify basic concepts of quality assurance for automated hematology cell counting systems

- Describe acceptable practices  
- Perform basic quality assurance (performed in preceptorship)  
- Assess data to ensure quality.  
- Monitor quality assurance program  
- Describe the limitations and list interfering substances

Identify and describe hemogram parameters

- Evaluate patient data  
- Describe the flagging system  
- Correlate scatter plots, histograms and data plots with the peripheral smear

Describe the mathematical calculations used to monitor instruments

Recognize unexpected results

Troubleshoot and corrective action
Discus the principle of Automated reticulocyte counting  Level 1
Describe acceptable practices  Level 1
Perform basic quality assurance  (performed in preceptorship)  Level 2
Assess data to ensure quality  Level 3
Monitor quality assurance program  Level 3
Describe the limitations and list interfering substances  Level 1

Identify basic concepts of electromechanical and photo-optical systems  Level 1
Describe acceptable practices  Level 1
Perform basic quality assurance  (performed in preceptorship)  Level 2
Assess data to ensure quality.  Level 3
Monitor quality assurance program  Level 3
Describe the limitations and list interfering substances  Level 1

Identify basic concepts of quality assurance for automated coagulation systems  Level 1
Describe acceptable practices  Level 1
Perform basic quality assurance  (performed in preceptorship)  Level 2
Assess data to ensure quality.  Level 3
Monitor quality assurance program  Level 3
Describe the limitations and list interfering substances  Level 1

Identify basic concepts of spectrophotometric, chromogenic substrate assays  Level 1
Describe acceptable practices  Level 1
Perform basic quality assurance  (performed in preceptorship)  Level 2
Assess data to ensure quality.  Level 3
Monitor quality assurance program  Level 3
Describe the limitations and list interfering substances  Level 1

Identify basic concepts of overall laboratory quality assurance  Level 1
Describe acceptable practices  Level 1
Perform basic quality assurance  (performed in preceptorship)  Level 2
Assess data to ensure quality.  Level 3
Monitor quality assurance program  Level 3