CE 3345 Design of Concrete Structures 11172
Fall 2023 Syllabus

*Note: the instructor reserves the right to modify the following information as deemed necessary.*

Lecture Session: MWF 11:30am – 12:20pm
Lecture Location: Classroom Bldg C305

Instructor: Joanne Moyer PhD
Email: jmmoyer@utep.edu
Online Office Hours: By appointment or weekly study sessions. Weekly study sessions to be announced.
Office Location: A-212

REQUIRED MATERIALS:

Textbook: Design of Reinforced Concrete
10th Edition by: Jack C. McCormac and Russell H. Brown
ISBN: 978-1-118-87910-8

Calculator: Only NCEES approved calculators will be permitted, as these are what is allowed for the Fundamentals of Engineering exam. Visit the NCEES website (http://ncees.org/exams/calculator/) for more information. No phones. The following are a few of the suggested calculators:

- Hewlett Packard – HP 33S
- Casio – FX 115MS or FX 115MSPlus
- Texas Instruments – TI 30X IIS
- Texas Instruments – TI 36X SOLAR

It is your responsibility to get acquainted with the features of the calculator you decide to use. I recommend that you use this calculator for all your work (including other courses) since this will help you learn how to use all the features of your calculator.
CELL PHONES:

Please be courteous, and turn off your cell phones during the class lectures.

*The mere possession of a disallowed calculator, any cell phone or any other electronic item on or near you during exams is the ground for receiving a grade of zero.*

COURSE OBJECTIVES:

At the end of this course, students will be able to:

1. Become familiar with codes, standards, and specifications commonly used in structural design;
2. Become familiar with reinforced concrete materials;
3. Understand basic behavior and failure modes for simple structural reinforced concrete members.
4. Be able to analyze and design reinforced concrete members subjected to flexure and shear: single and double-reinforced beams, flanged sections, one-way slabs, bond and anchorage;
5. Be able to analyze and design reinforced concrete columns and develop moment-axial load interaction curves; and
6. Understand the role and responsibilities of the structural engineer in a design project.

GRADING POLICY:

Your grade for this course will be determined on the basis of the following percentages:

<table>
<thead>
<tr>
<th>Grading Scheme</th>
<th>Five Exams:</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group Term Presentation and Projects:</td>
<td>25%</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Grading Structure:

- A ≥ 90
- 90 > B ≥ 80
- 80 > C ≥ 70
- 70 > D ≥ 60
- 60 > F
WHAT SHOULD YOU EXPECT FROM ME AS THE INSTRUCTOR?

1. I will provide you with clear instructions on class expectations.
2. I will check my e-mail at least three times per week and will answer back to you as soon as possible.
3. I will leave myself open to suggestions about improvement of the class and class related activities.
4. I will do all I can to enhance your learning and success in this class.
5. If any changes in the course are to be implemented, I will ensure that the class is notified in a timely manner.

ATTENDANCE & CLASS PARTICIPATION:

- **Students are expected to attend all lectures and read all course material assigned.**
- Those who fail to attend classes regularly are inviting scholastic difficulty and, with the approval of the Dean of the College of Engineering, may be dropped from the course with a grade of F for repeated (4 or more) unexcused absences.
- Those who fail to complete the course material are inviting scholastic difficulty.

SUGGESTED PRACTICE PROBLEMS:

- Suggested practice problems will be assigned for every topic. **However, the problems will not be collected or graded.**
- You are encouraged to work on assignment problems in groups, discuss with the TA and/or Professor.
- It is highly recommended that suggested problems are solved in order for students to better understand the material and for practice.

EXAMS:

Exams will be administered during the scheduled lecture time on-campus.

- Exams are closed book – closed notes. No cell phones allowed.
- **No makeup exams will be administered. No exceptions!!**
  - Final Exam grade will replace the lowest exam grade, provided the final exam score is higher than the lowest exam grade.
- **See tentative schedule for Exam dates.**

Five mid-term exams will be given. **You must take the exams during the scheduled exam times.** These dates are announced on the first day of class although the dates may be changed according to the progress of the class.

In accordance with University regulations, students who miss examinations will receive grades of zero.

Make sure that you do not have a cell phone or any other electronic item in your possession during the exams.
The mere possession of a disallowed calculator, any cell phone or any other electronic item on or near you during exams is the ground for receiving a grade of zero.

FINAL EXAM:

The final exam will be administered during the scheduled lecture time on-campus

- Final Exam is closed book – closed notes. No cell phones allowed.
- Final Exam is optional
- Please see tentative schedule for Final Exam day and time.
- Final Exam is comprehensive.
- Final Exam grade will replace the lowest of the 5 Semester Exams provided the Final Exam grade is higher than the lowest Semester Exam.

XTRA-CREDIT:

There will be 1 Xtra-Credit opportunities:

1) During the last week of courses; you will be asked to provide advice to future students about the course. Xtra-Credit includes 4-points towards your exam grade. Deadline is December 3.

COURSE PORTFOLIO:

Students are encouraged to prepare a course portfolio documenting all materials relevant to the course. The portfolio shall contain Power Point lecture notes, class notes, handouts, exams, homework assignments, study notes, and any relevant materials accumulated during the semester. I believe that you will benefit from the portfolio years later when you need to review the learned subjects for advanced courses or professional engineer licensure exam.

TUTORING

ACES provides tutoring for Statics. Please take advantage of this great resource located in Classroom Building Room C-001. See the link below for hours of operation. [https://www.utep.edu/engineering/student-resources/student-resources-aces.html](https://www.utep.edu/engineering/student-resources/student-resources-aces.html)

PERSONS WITH DISABILITY OR QUALIFIED ACCOMMODATIONS:

UTEP seeks to provide reasonable accommodations for all qualified individuals with disabilities, including learning disabilities. This university will adhere to all applicable federal, state, and local laws, regulations and guidelines with respect to providing reasonable accommodations as required affording equal educational opportunity. It is the student's responsibility to register with Center for Accomodation and Support Services (CASS) in the East Union Bldg., Room 106 within the first two weeks of classes, and inform the faculty member to arrange for appropriate accommodations. Center for Accomodation and Support Services (CASS) can also be reached in the following ways:
POLICY ON CHEATING:
Students are expected to be above reproach in all scholastic activities. Students who engage in scholastic dishonesty are subject to disciplinary penalties, including the possibility of failure in the course and dismissal from the university. Scholastic dishonesty includes but is not limited to cheating, plagiarism, collusion, the submission for credit any work or materials that are attributable in whole or in part to another person, taking an examination for another person, any act designed to give unfair advantage to a student, or the attempt to commit such acts. The Department of Civil Engineering has established the Honor Code because it has an obligation to the State and the public to prevent students from entering the profession who are not honest and trustworthy in their academic efforts. This Honor Code Policy allows the Department to recommend disciplinary action to the University Student Conduct Office and to remove students from the Department who have violated the Honor Code. This Honor Code is consistent with the Student Conduct and Discipline Chapter of the Student Affairs Section of the Handbook of Operating Procedures of the University of Texas at El Paso.

Course tutoring/homework help sites, such as Chegg, are strictly prohibited for use on exams and quizzes.
All students should sign the Honor Code Agreement and submitted to the Civil Engineering office for record keeping and be deeply familiar with the Honor Code Policy published in our website:  http://ce.utep.edu/honorcode.htm

GROUP PROJECTS AND PRESENTATION INFORMATION AND INSTRUCTIONS WILL BE PROVIDED SEPARATELY AS ADDENDUM TO THIS SYLLABUS.

FINAL COMMENT:
I wish you all the best in the course. Please do not hesitate to ask questions. Any specific comments that students have on how the course might be improved are particularly welcome, especially during the semester.

*See next page for Tentative Course Schedule*
TENTATIVE SCHEDULE:
NOTE: Schedule may be modified to accommodate particular needs as the semester progresses. It is to the students' benefit that they read and study the chapters and sections as outlined in this calendar to reinforce the material that is presented in class.

<table>
<thead>
<tr>
<th>Week</th>
<th>DATES</th>
<th>CLASS TOPICS</th>
<th>Group Project</th>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aug 28 - Sept 3</td>
<td>Syllabus, Chapter 1 Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sept 4 - Sept 10 <em>Sept 4 Labor Day-No Classes</em></td>
<td>Chapter 1: Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sept 11 - Sept 17</td>
<td>Chapter 2: Flexural Analysis of Beams</td>
<td></td>
<td>Exam 1 Friday Sept 15</td>
</tr>
<tr>
<td>4</td>
<td>Sept 18 - Sept 24</td>
<td>Chapter 3: Strength Analysis of Beams According to ACI Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sept 25 - Oct 1</td>
<td>Chapter 4: Design of Rectangular Beams and One-Way Slabs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Oct 2 - Oct 8</td>
<td>Chapter 4: Design of Rectangular Beams and One-Way Slabs</td>
<td></td>
<td>Exam 2 Friday Oct 6</td>
</tr>
<tr>
<td>7</td>
<td>Oct 9 - Oct 15</td>
<td>Chapter 5: Analysis and Design of T Beams and Doubly Reinforced Beams</td>
<td></td>
<td>Phase 1 due Sunday Oct 15</td>
</tr>
<tr>
<td>8</td>
<td>Oct 16 - Oct 22</td>
<td>Chapter 6: Serviceability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Oct 23 - Oct 29</td>
<td>Chapter 7: Bond, Development Lengths, and Splices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Oct 30 - Nov 5</td>
<td>Chapter 8: Shear and Diagonal Tension</td>
<td></td>
<td>Exam 3 Friday Nov 3</td>
</tr>
<tr>
<td>11</td>
<td>Nov 6 - Nov 12</td>
<td>Chapter 9: Introduction to Columns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Nov 13 - Nov 19</td>
<td>Chapter 10: Design of Short Columns Subject to Axial Load and Bending</td>
<td></td>
<td>Exam 4 Friday Nov 17</td>
</tr>
<tr>
<td>13</td>
<td>Nov 20 - Nov 26  <em>Nov 23 24 Thanksgiving Holiday-No Classes</em></td>
<td>Chapter 11: Slender Columns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Nov 27 - Dec 3</td>
<td>Group Presentations Monday Nov 27 and Wednesday Nov 29</td>
<td></td>
<td>Group Presentations, Group Project Report due Sunday Dec 3</td>
</tr>
<tr>
<td>15</td>
<td>Dec 4 - Dec 7    <em>Friday, Dec 8-Dead Day</em></td>
<td>Chapter 11: Slender Columns</td>
<td></td>
<td>Exam 5 Thursday Dec 7</td>
</tr>
</tbody>
</table>

Wednesday, Dec 13

Final Exam: 1:00pm - 3:45pm