GEOPHYSICS 4336/5335 GEOLOGY 6315: INTRODUCTION TO REMOTE SENSING

The University of Texas at El Paso Department of Geological Sciences
Fall Semester 2017

Instructor:
Dr. José M. Hurtado, Jr.
jhurtado@utep.edu
Geology room 301a
(915) 747-5669

Class Website:
http://www.geo.utep.edu/pub/hurtado/remotesensing
Check the class website often for updates and announcements. The website is a key part of the class and will be the venue for a lot of important class business.

Class Meetings:
Lecture/Lab: Mon. 10:30-11:50 am, Geology 320
Lab/Lecture: Wed. 10:30-11:50 am, Geology 409
Office Hours: Mon. and Wed. 1-3, Geology 301a (or by appointment)

Text:
Useful, but not required books include:

In addition to excerpts from these and other texts, handouts and supplemental materials from a variety of other sources will also be provided throughout the semester. A small collection of books you can use as reference will also be available to borrow from Dr. Hurtado for short periods of time.

In addition, the web will be critical resource during the semester. You will be expected to access a number of useful links to supplement the textbook and other materials. These resources are posted on the class website and will be continually updated throughout the semester.

Grading:
~10 laboratory/homework assignments (50%); 1 project/presentation (10%); 1 midterm examination (15%), 1 final examination (15%); lecture and lab participation (10%).
Graduate students will be held to a higher standard than undergraduates. Specifically, selected homework assignments/problems/tasks and selected exam problems will be designated as required for graduate students and extra credit for undergraduates. Expectations on the final project/presentation will also be different: graduate students are expected to produce a product similar to a research proposal or short paper, whereas undergraduates will be expected to produce a product equivalent to an extended laboratory report.

Work will be assigned and due in lab. All students will be expected to have access to Microsoft Office (Word, Excel, and PowerPoint) to complete class assignments. Note that most assignments will be turned in electronically (or as otherwise instructed). Storage space, data, and software for all assignments will be made available to you on the Geology department computer system. Therefore, you will all need accounts to access the UTEP open-lab PCs in Geology 409. Contact me AND the system administrator, Carlos Montana (montana@geo.utep.edu), if you do not have access already. Also contact BOTH of us to report and follow up on any technical problems you have throughout the semester. Note that Carlos will be the one to fix any and all technical problems, not me, but I need to be in the loop on any and all issues!

Policies:

Show up, show up on time, and show up prepared! Do reading and other assignments ahead of time, and come to class meetings with questions about what you read and about material from the previous class meeting. I expect everyone to contribute to class discussions and to be fully engaged in class.

Attendance and class participation in both lecture and labs are required. I reserve the right to drop you from the course if you have excessive absences. Please contact Dr. Hurtado about any concerns, schedule conflicts, missed work, etc. ASAP and, whenever possible, in advance. Valid excuses include illness, absence with the instructor's prior approval, official University business, etc., but all require documentation. Otherwise, unless other arrangements are made, late work will lose up to 50% of its value for each day it is late, and work will not be accepted more than one week late. In general, make-up exams and assignments will not be given.

If you are in the military with the potential of being called to military service and/or training during the course of the semester, you are encouraged to contact the instructor as soon as possible.

If you think you may have a disability or if you are experiencing learning difficulties, please contact the Disabled Student Services Office (DSSO) at (915) 747-5148. They're located in Union East room 106 or you can reach them by e-mail at dss@utep.edu. The student is responsible for presenting to the instructor any DSS accommodation letters and instructions.

Your continued enrollment in this course implies your acceptance of the policies set by the instructor!
While **collaboration on assignments is encouraged**, the intent is to foster problem-solving skills and mastery of the subject matter, not just a quick way to get “answers”. **All work is expected to be your own!** The University guidelines for acceptable student conduct are very specific and will be strictly followed. Please read the guidelines (see http://studentaffairs.utep.edu/dos), and contact the Dean of Students or Professor Hurtado if you have any concerns.

Expectations:

The goal of this course is for the student to attain a firm understanding of the physics and basic principles of remote sensing. The emphasis in this course will be on basic concepts, and there will be mathematical treatments of electromagnetism, statistical physics, physical chemistry, optics, orbital mechanics, and photogrammetry, among other topics. Other topics will include the spectral characteristics of biological and geological materials, sensor system design, image acquisition and processing, and applications of remote sensing to the Earth and planetary sciences. Students will be given access to state-of-the-art computer facilities, instruction on how to use the popular image processing software ENVI, and exposure to a variety of remotely sensed datasets including aerial photographs, satellite-based optical imagery (e.g. Landsat, SPOT, ASTER, IKONOS, etc.), LIDAR, and RADAR. Note that this course is intended to prepare the student for Geophysics 5336 (Digital Image Processing) and for doing research using remote sensing and digital image processing concepts and methods.

Note to graduate students: Graduate students (particularly Ph.D. students) will be held to a higher standard than undergraduates. This can include, but is not limited to, the expectation of more in-depth/detailed/higher-quality laboratory work, required oral/written presentations, and supplementary homework/exam questions. See “Grading” above for more details.

Course Outline:

Note that the details of our schedule are likely to change as the semester progresses. Please be flexible, and let Dr. Hurtado know if you have any concerns or suggestions. A preliminary, detailed schedule attached (see attached page).

We will not meet on the following dates: Sept. 4 (Labor Day), Oct. 2, Oct. 4, Oct. 11.
<table>
<thead>
<tr>
<th>Week</th>
<th>Dates (M, W)</th>
<th>Lecture Topics</th>
<th>Assignments (assigned and due on W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Aug. 28, 30</td>
<td>Introduction: Definition, History, and Overview Electromagnetic Radiation: Spectra, Maxwell's Equations, and Optics; Nomenclature, Generation, and Detection; Interaction with Matter and Surfaces</td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>Sept. 6</td>
<td>Digital Image Processing</td>
<td>Lab 1: ENVI tutorials on general ENVI functionality</td>
</tr>
<tr>
<td>Week 3</td>
<td>Sept. 11, 13</td>
<td>Electromagnetic Radiation: Spectra, Maxwell's Equations, and Optics; Nomenclature, Generation, and Detection; Interaction with Matter and Surfaces</td>
<td>Lab 2: ENVI tutorials on map composition, GIS/vectors, etc., and image fusion</td>
</tr>
<tr>
<td>Week 4</td>
<td>Sept. 18, 20</td>
<td>VNIR Remote Sensing: Source Characteristics, EM-Surface Interactions, and Material Spectra</td>
<td>Lab 3: ENVI tutorials on image registration, georeferencing, orthorectification, and mosaicking</td>
</tr>
<tr>
<td>Week 5</td>
<td>Sept. 25, 27</td>
<td>TIR Remote Sensing: Emissivity vs. Temperature and Spectra</td>
<td>Problem Set 1</td>
</tr>
<tr>
<td>Week 7</td>
<td>Oct. 9, 11</td>
<td>VNIR & TIR Remote Sensing: Applications and Examples</td>
<td>Lab 4: ENVI tutorials on image calibration, atmospheric correction, and multispectral image processing</td>
</tr>
<tr>
<td>Week 8</td>
<td>Oct. 16, 18</td>
<td>VNIR & TIR Remote Sensing: Applications and Examples</td>
<td>Lab 5: ENVI tutorials on classification</td>
</tr>
<tr>
<td>Week 9</td>
<td>Oct. 23, 25</td>
<td>Sensors and Satellites: Optics & Sensor Design; Spacecraft Design; Orbital Mechanics</td>
<td>Problem Set 2</td>
</tr>
<tr>
<td>Week 10</td>
<td>Oct. 30, Nov. 1</td>
<td>Air Photos, Photogrammetry, and Photointerpretation</td>
<td>Lab 6: ENVI tutorials on basic hyperspectral analysis</td>
</tr>
<tr>
<td>Week 11</td>
<td>Nov. 6, 8</td>
<td>Air Photos, Photogrammetry, and Photointerpretation</td>
<td>Lab 7: ENVI tutorials on advanced hyperspectral analysis</td>
</tr>
<tr>
<td>Week 12</td>
<td>Nov. 13, 15</td>
<td>Microwave Remote Sensing: EM-Surface Interactions and RADAR</td>
<td>Lab 8: ENVI tutorials on hyperspectral case studies (geology, coastal environments, vegetation)</td>
</tr>
<tr>
<td>Week 13</td>
<td>Nov. 20, 22</td>
<td>Microwave Remote Sensing: SAR; LIDAR</td>
<td>Lab 9: ENVI tutorials on change detection</td>
</tr>
<tr>
<td>Week 14</td>
<td>Nov. 27, 29</td>
<td>Hydrospheric, Atmospheric, and Planetary Surface Remote Sensing Examples</td>
<td>Lab 10: Photointerpretation and Photogrammetry</td>
</tr>
<tr>
<td>Week 15</td>
<td>Dec. 4, 6</td>
<td>Project Presentations: During MW Lecture and Lab</td>
<td>Final Exam and Papers: Due Fri., Dec. 15</td>
</tr>
</tbody>
</table>

Final Exam date (scheduled by UTEP): Fri., Dec. 15, 10 am – 12:45 pm in Geology 320

Your continued enrollment in this course implies your acceptance of the policies set by the instructor!