SE 5346 System Architecture & Design
Course Syllabus (v04)
Spring 2022 Semester

University of Texas at El Paso
Master of Science in Systems Engineering

Course Description
System Architecture & Design involves the conceptualization of a technical system solution to a technical problem. The technical problem is stated in terms of system requirements to which the architect must devise a solution that meets a range of system performance, reliability, safety, etc. objectives. The realization of the engineering of the system is generally undertaken by teams of engineers responsible for various elements of the system. It is the architect’s job to take the system requirements (the statement of the problem) and conceptualize or devise a practicable solution in the faces of competing constraints of cost, schedule, quality, and performance. This can become a highly challenging technical endeavor, and requires planning and coordination on the part of the architect. The ultimate product of the architecture work is the Architecture Description which is produced for use by the rest of the engineering staff to proceed with the detailed design and development, construction, testing, operations, and eventual disposal of the system. The Architecture Description must conform to accepted standards of syntax and semantics in order to minimize the potential for misinterpretation and misunderstanding by the rest of the organization. This course prepares the student to be able to plan a system architecture project, develop system architecture artifacts, and deliver an acceptable Architecture Description product.

By the end of this course, participants will be able to:

- Become conversant in the terminology used in Architecture Development
- Appreciate the role of the Architecture process in the Systems Engineering Lifecycle
- Translate stakeholder needs into technical requirements
- Establish Use Cases for the System of Interest (SOI)
- Create an Architecture Management Plan (AMP)
- Become conversant in the basics of the Systems Modeling Language (SysML)
- Perform basic operations using a common system modeling tool
- Identify and define required system functionality
- Allocate system requirements to system functions
- Allocate system functions to physical components
- Perform system trades to identify a preferred candidate solution
- Deliver a complete Architectural Description
- Become conversant in the Zachman Framework and Unified Architectural Framework
- Abide by CMMI and INCOSE best practices
- Enhance Complex Systems thinking and creativity
Course Content Summary (use hyperlink to jump to selected week)

<table>
<thead>
<tr>
<th>Module 1 (Starts Tuesday, 01/18/22)</th>
<th>Week 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Foundation and Stakeholder Requirements</td>
<td>Week 2</td>
</tr>
<tr>
<td>Module 2 (Starts Monday, 01/31/22)</td>
<td>Week 3</td>
</tr>
<tr>
<td>System Functionality</td>
<td>Week 4</td>
</tr>
<tr>
<td>Module 3 (Starts Monday, 02/14/22)</td>
<td>Week 5</td>
</tr>
<tr>
<td>Architecture Frameworks and Modeling Methodologies</td>
<td>Week 6</td>
</tr>
<tr>
<td>Module 4 (Starts Monday, 02/28/22)</td>
<td>Week 7</td>
</tr>
<tr>
<td>Architecture Description and Architecture Management Plan</td>
<td>Week 8</td>
</tr>
<tr>
<td>Module 5 (Starts Monday, 03/21/22)</td>
<td>Week 9</td>
</tr>
<tr>
<td>System Thinking and Complex Systems</td>
<td>Week 10</td>
</tr>
<tr>
<td>Module 6 (Starts Monday, 04/04/22)</td>
<td>Week 11</td>
</tr>
<tr>
<td>Elements of Form and Function</td>
<td>Week 12</td>
</tr>
<tr>
<td>Module 7 (Starts Monday, 04/18/22)</td>
<td>Week 13</td>
</tr>
<tr>
<td>SysML State Machine Diagram and Parametric Diagram</td>
<td>Week 14</td>
</tr>
</tbody>
</table>

Note:

- This course is currently being modified to deemphasize the Systems Modeling Language (SysML), since this topic is covered in other UTEP courses, and place additional emphasis on more theoretical aspects of System Architecture.
- New material to replace the SysML topic coverage is being identified at this time.
- The SysML topics in Modules 5 thru 7 may be replaced with newly identified topic material, as that new material becomes available.
- The instructor will announce availability of new course materials for Modules 5 thru 7 if and when that material becomes available.
- In that event, this syllabus will be updated to reflect the new content for Modules 5 thru 7.

Instructor
Mr. John Artus

Contact Information

<table>
<thead>
<tr>
<th>e-mail</th>
<th>jgartus@utep.edu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online office hours</td>
<td>M, W, Th, Fr after 6pm Mountain Time</td>
</tr>
<tr>
<td>Please email me to coordinate an appointment on Zoom</td>
<td></td>
</tr>
<tr>
<td>Video Class Meeting</td>
<td>Tuesdays at 6pm Mountain Time</td>
</tr>
</tbody>
</table>

The University of Texas at El Paso
Note:

- For course-related inquiries, students shall use the course Discussion Board by creating a new thread
 - If you need help understanding a concept, reach out to your fellow students first via Discussion Board
 - The first student that provides the definitive solution to an issue raised will earn 10 points each for the student needing the help and the student providing the first completely helpful solution
 - The student requesting help must notify the instructor by email, indicating which other student provided the help needed
 - Any student can earn a maximum 40 extra credit points using this mechanism
 - Only serious problems will be considered by the instructor for earning points this way
 - Seriousness of the issue is up to the instructor to determine
 - If the student seeking help is unable to find the needed help via this mechanism, then please contact the instructor via email for the help needed

- For personal issues impacting performance in the course, contact the instructor by e-mail.

- If there are any work/life issues that prevent you from accomplishing assignments/tests, please let the instructor know with as much advance notice as possible via email
 - Students with legitimate work/life issues will be granted reasonable time to make up assignments, at the instructor’s discretion
 - No students will be penalized for assignments/tests impacted by technical issues (such as Blackboard or Internet errors or outages) or instructor error
 - The best advice is to contact the instructor via email with any issues preventing you from accomplishing your work in this course

Required Reading Material

NOTE: The course material is in the process of being updated. If this process is completed in time, then we will be using the following textbook:

Unfortunately, this textbook is out of print. The UTEP Library will be making chapters from this text available as needed. The instructor will advise you in advance of the need to access chapters from this textbook.

In the event the updated course material is not available in time, then you will need the following course textbook:
 o This e-book is available in the UTEP Library for you to access at:
 ▪ https://lib.utep.edu/record=b4886686
 ▪ You will have to log in with your UTEP credentials to access this e-book
 ▪ If you need help with setting up Global VPN on your device, you should contact the Help Desk at 915-747-4357

Other Reading Resources Required:

Required Computer Software
Standard Microsoft Office products are required for assignment submission.

NOTE: The course material is in the process of being updated. If this process is not complete in time, then we will be using Magic System of Systems Architect 2021x from Dassault No Magic, Inc. to perform our system modeling and architecture development. UTEP provides the software which must be downloaded and installed on your computer. Magic System of Systems Architect 2021x is executable on both Windows and Mac platforms.

The instructor will inform you in advance whether this software will need to be installed or not.

Video Classroom
The instructor will deliver a video class once a week on the Tuesday of each week, except as noted in the class calendar posted on the Blackboard Home Page for this course. The video class will be delivered based on the instructor’s availability. Situations may prevent the instructor from delivering a video class during a given week. The instructor will attempt to give as much advance notice as possible when a video class will not be delivered. Student attendance is totally optional. The video class is made available for the student’s benefit. It is suggested that you take advantage of the opportunity to bring questions to the class and have them answered by the instructor. For example, this is a good opportunity to ask questions about the reading material, the assignments, and the tests. The video classes will be recorded and posted on Blackboard for students to review as needed. Occasionally, the video class may be scheduled on a day of the week other than Tuesday. Always check the course schedule posted on Blackboard to determine the current dates for scheduled course activities.
Student Resources

Student resources include the course textbook, internet resources related to lectures for each Module, instructions for collaborative work, and links to the Library Guide, UTEP Bookstore, and UTEP technology support. Some of the work that must be performed by students is done in a group collaborative setting. The collaborative section in Blackboard identifies the groups and group members for this course. The student resources section is located in the Blackboard Home Page for this course.

Summary of Course Structure

Course content is provided in seven modules that are posted onto Blackboard on the Saturday before the beginning of each module (every two weeks). Each module will have a menu to guide participants through the content and identify discussion board postings and/or assignments/tests to be submitted to Blackboard. The first module provides course overview and objectives, facilitates attendee’s introductions and team building, and discusses SE main concepts addressed in the course. The section titled “Detailed Course Description” lists the detailed activities for each module that you will be responsible for. The seven modules for this course are as follows:

<table>
<thead>
<tr>
<th>Module Number</th>
<th>Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Systems Foundation and Stakeholder Requirements</td>
</tr>
<tr>
<td>2</td>
<td>System Functionality</td>
</tr>
<tr>
<td>3</td>
<td>Architecture Frameworks and Modeling Methodologies</td>
</tr>
<tr>
<td>4</td>
<td>Architecture Description and Architecture Management Plan</td>
</tr>
<tr>
<td>5</td>
<td>Systems Thinking and Complex Systems</td>
</tr>
<tr>
<td>6</td>
<td>SysML Activity Diagram and Sequence Diagram</td>
</tr>
<tr>
<td>7</td>
<td>SysML State Machine Diagram and Parametric Diagram</td>
</tr>
</tbody>
</table>

Student Deliverables

Deliverables are assignments and tests that the student is responsible for delivering on time and with the required quality to earn points towards the desired grade. Full instructions on the requirements and due dates for assignments and for test taking will be included in Blackboard postings. The goal in delivering assignments is for the student to clearly demonstrate command of the knowledge gained/derived from class readings and assignments. The student should expect to convince the instructor, though the submitted assignments/tests, that the student has command of the knowledge gained during the course. Students are responsible for delivering the following artifacts as part of this course.

Discussion Assignment

A Discussion Assignment is prepared by the student alone and submitted on the Thursday of each week. Occasionally, the Discussion Assignment may be due on a day of the week other than Thursday. Always check the course schedule posted on Blackboard to determine the current dates for assignment due
dates. A set of instructions will be provided by the instructor for each assignment as part of the module. The instructions will indicate the dedicated sources of knowledge the student should pull from to develop the assignment response. The student is free to access any additional resources the student feels will support an argument being developed. In all cases, the student is required to cite the source of any points made in the argument that are derived from sources other than the student’s own knowledge resource (brain). The purpose of the discussion assignment is to open up a topic for class discussion. The Discussion Assignment submission will be shared with other students in the class. The idea is that other students can argue in support or against the argument made in the submitted assignment.

Discussion Reply Assignment

A Discussion Reply Assignment is prepared by the student alone and submitted on the Friday of each week. Occasionally, the Discussion Reply Assignment may be due on a day of the week other than Friday. Always check the course schedule posted on Blackboard to determine the current dates for assignment due dates. The student will choose a minimum of two discussion assignment submittals from other students to respond to. When responding to someone else’s submittals, do not simply say “I agree with your point....” Agreeing is easy. If you wish to agree with a point, provide additional evidence to support why the point deserves further consideration. Disagreeing, and saying why you disagree is more difficult, but may allow the student to better demonstrate command of knowledge for the instructor to consider. Look for a student submission to comment on, pick submissions that you either agree or disagree with and then say why you agree or disagree, with evidence.

Individual Assignment

An Individual Assignment is prepared by the student alone and submitted on the Friday of each week. Occasionally, the Individual Assignment may be due on a day of the week other than Friday. Always check the course schedule posted on Blackboard to determine the current dates for assignment due dates. A set of instructions will be provided by the instructor for each assignment as part of the module. The instructions will indicate the dedicated sources of knowledge the student should pull from to develop the assignment response. The student is free to access any additional resources the student feels will support an argument being developed. In all cases, the student is required to cite the source of any points made in the argument that are derived from sources other than the student’s own knowledge resource (brain). The individual assignment submission will not be shared with other students in the class.

Group Assignments

A Group Assignment is developed by all members of a team equally, and submitted on the Sunday of each week. Occasionally, the Group Assignment may be due on a day of the week other than Sunday. Always check the course schedule posted on Blackboard to determine the current dates for assignment due dates. The instructor will provide instructions on what is expected of the group deliverable for each Group Assignment. Some of the weekly group assignments will build up from previous week group assignments. The group will review the assignment for the week and decide on an equitable distribution of tasks to each group member.
The group will segregate the individual tasks to group members such that when the individual contributions are merged into the deliverable to be submitted. In the submission, it will be clearly indicated which member of the group prepared which section(s) of the assignment.

Late Delivery

There is no such thing as late assignment delivery in this course. If an assignment is not submitted by the due date/time, the assignment will receive a zero score. Blackboard automatically indicates which assignments are late. Take care to observe the due date and due time. If an assignment is one second late, Blackboard will flag the assignment as late. Zero points will be rewarded for late assignments. Be sure to start your work sufficiently in advance of the due date/time in order to submit assignments on time.

It is the student’s responsibility to notify the instructor with as much advance notice as possible when it is known that an assignment due date/time will be missed for legitimate reason. If such advance notice is not possible, still notify the instructor so that alternative assignment delivery arrangements can be made. Students WILL NOT be penalized for events beyond their control which prevent them from turning assignments in on time. However, in these cases, the student must notify the instructor for alternate submission arrangements.

An exception to the late delivery policy is made during Module 1, while students become familiar with the course assignment submission policy and pace. Starting with Module 2, the Late delivery policy will be in full force.

Minimum Word Count

Most (if not all) assignments will come with a minimum word count requirement in the instructions. The purpose of the word count is to encourage the student to develop a fully thought-out response. Do not pack your discussions and arguments with fluff, filler, or nonsense just to meet the word count limit. Provide good, well-thought-out discussions, with good explanation of your argument points on technical merits. The instructor is a seasoned Systems Engineering professional. The instructor will not be swayed by nonsense arguments. The instructor will grade assignments based on the quality of the arguments provided by the student.

Plagiarism

Do not plagiarize. Credit all sources. It’s perfectly OK to quote a source, as long as it is credited. But, if your whole argument is based on an extensive quote, you won’t receive much credit for originality. Plagiarism will simply NOT be tolerated.

The University policy on Plagiarism is:

Plagiarism is the act or instance of using, or closely imitating the language and/or thoughts of another author; including words, ideas, illustrations, structure, computer code, and other expressions or media; and presenting that material without authorization and/or the representation of that author’s work as one’s own academic work, being offered for credit or in conjunction with a program, course, or degree requirements.
The instructor is bound by the University’s Handbook of Operating Procedures (HOP) to report any such incident of plagiarism to the Office of Student Conduct and Conflict Resolution (OSCCR). The instructor has done this in past situations, and will do so again as the need warrants.

With regard to citing the source of information obtained from sources, formal citation, as in using MLA, ALA, Chicago, etc formats is recommended, but is not required. Students are required to provide sufficient citation information that allows the instructor to track down and review the source.

For further information on formal citation, here is a good source:

https://www.easybib.com/guides/citation-guides/how-do-i-cite-a/

Cheating

With regard to cheating, there are two areas of concern in this course: Assignments and Tests.

With regard to assignments, you are allowed and encouraged to "collaborate" with fellow students - up to a point. Collaboration on understanding of the purpose of an assignment, the requirements, as far as what you are being requested to provide in your assignment submissions, and possible general approaches to solutions is acceptable behavior in this course. In fact, you are encouraged to use the discussion forum to discuss these kinds of topics in collaboration with your fellow classmates. However, this is the point at which collaboration ends. At this point you are obligated to pursue the identification and definition of a specific solution to an assignment problem on your own. Working with other students beyond this point, except obviously for group assignments, moves into "collusion." You do not have the authority to collude with other students. This qualifies as cheating.

UTEP defines collusion as:

Unauthorized collaboration with another person in preparing academic assignments offered for credit; in other words, seeking aid from another for an assignment without having authority to do so.

And

Collaboration with another person to commit a violation of the rules on scholastic dishonesty.

Collaboration on tests is permitted in this course only to include scholarly study in preparation for taking a test. Once the scholarly preparation is complete, no further collaboration may take place. Any form of collusion by passing answers to tests from one person to another, or by obtaining and using answers obtained from outside sources, or by employing any other types of dishonesty, is strictly prohibited.

In all cases of Plagiarism and Cheating and any other form of Academic Dishonesty, the instructor is required to, and will be reporting such cases to the OSCCR. In cases of collusion on tests, the instructor will recommend to the OSCCR the harshest penalty be applied. In doing so, the instructor is effectively defending the case for those students that worked hard to prepare and submit work that reflects their dedicated efforts against those that would cheat to get the same grade for little to no effort put forth.

As a student pursuing a Master’s degree in Engineering, you should understand the gravity of these issues and commit to yourselves, and for your own integrity, to comply with these rules of conduct.
Syllabus Test

A test will be issued at the end of the first week of Module 1 to test the student’s understanding of the rules of student conduct for this course. The test will be available to take starting on the first day of class. The test is due on Sunday at the end of the first week of the Module 1. The test is open book. The test must be taken by the due date/time or it receives a zero grade. There is no makeup opportunity for this test. The test covers the content of the syllabus related to rules of student conduct for this course. The test does not cover the details of assignments given each week. The test consists of 15 multiple choice questions, each of which have five possible answers. Select the best possible answer for each question. The test duration is 60 minutes. There is only one test attempt allowed.

Module Tests

A test will be issued once for each module. Tests are given on the second Sunday of each module. Occasionally, the Module Test may be due on a day of the week other than Sunday. Always check the course schedule posted on Blackboard to determine the current dates for Module Test dates. The test will be available to take at 1 pm Mountain Time on the Sunday of the second week of each module. The test is due on the same Sunday at 11 pm Mountain Time. Always check the course schedule posted on Blackboard to determine the test due dates and times.

Tests are open book. The test must be taken by the due date/time or it receives a zero grade. There is no makeup opportunity for tests. Tests cover reading assignments, discussions, individual assignments, group assignments, and presentations in the module. Tests consists of 60 multiple choice questions, each of which have five possible answers. Select the best possible answer for each question. The test duration is 60 minutes. There is only one test attempt allowed. Tests are challenging. The better you prepare for the test, the better will be the outcome.

Note: Test grades account for 33% of the course grade. This is a significant percentage of the course grade. Students should note that test dates are given well in advance, and students should be prepared to make themselves available to be in place and ready to take the test during the 10-hour window that the test is available to be taken.

Note: Tests are designed to be CHALLENGING! Tests are meant to separate those that truly know the material from those that do not know the material. Do not expect to get perfect scores on every test. Expect to do the best you can on each test, through preparation, diligence, and persistence.

Class Interaction and Communication

Being Successful Online

This section has some tips about how to be successful online. Online learning is not a spectator sport. It is everyone’s responsibility to participate as fully as they can so everyone can get the most from the experience. Here are some simple rules to follow to ensure your participation and engagement in the learning process:

- Ask questions: If you don't know the answer, someone else will. The discussion board is the place for asking questions related to content, or any problems (related to the class) you are having. Make sure that you have clearly indicated the subject of your message.
• Reach out to others: Offer a fact, article, link, or other item that can help others learn something you can share. Use the discussion board for this purpose.
• Be appropriate: The online classroom is not the place for insulting or insensitive comments, attacks, or venting. Inappropriate behavior can be subject to disciplinary action, as well.
• Be diplomatic: When sending messages on emotionally charged topics, try writing the message and then walk away for at least an hour before re-reading the message and then sending it. Re-reading emotionally charged messages ensures that they are constructive instead of destructive. Think respectfully of the person at the other end.
• Stay focused: Stay on topic to increase the efficiency of your learning.

Grading Criteria

The maximum points achievable is 1360. The following scale is used for assigning letter grades.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>[90 % and above]</td>
<td>1224 -> 1360</td>
</tr>
<tr>
<td>B</td>
<td>[80 % - 89 %]</td>
<td>1088 -> 1223</td>
</tr>
<tr>
<td>F</td>
<td>[0 % - 79%]</td>
<td>0 -> 1087</td>
</tr>
</tbody>
</table>

Note that there will not be “rounding up” automatically. The instructor reserves the right to lower the grade scale if it is deemed appropriate.

Point Distribution

<table>
<thead>
<tr>
<th>Artifact</th>
<th>Module 1</th>
<th>Module 2</th>
<th>Module 3</th>
<th>Module 4</th>
<th>Module 5</th>
<th>Module 6</th>
<th>Module 7</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Readings and Lecture</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Discussion</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>350</td>
</tr>
<tr>
<td>Individual Assignment</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>280</td>
</tr>
<tr>
<td>Group Assignment</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>280</td>
</tr>
<tr>
<td>Test</td>
<td>90</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>450</td>
</tr>
<tr>
<td>Total</td>
<td>220</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>1360</td>
</tr>
</tbody>
</table>

Detailed Course Description

Refer to the course calendar posted on Blackboard for specific assignment and test due dates

Module 1, Week 1: Systems Foundation and Stakeholder Requirements

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
</table>
| Module 1, Week 1 Readings and Lesson Presentations | Required Reading
1. Course Syllabus (this document)
2. INCOSE Handbook 4e Sections 2.1 thru 2.6
3. INCOSE Handbook 4e Sections 3.3 thru 3.3.2
4. SEBoK v2.5 Part 2, System Fundamentals |
<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1, Week 1 Video Classroom</td>
<td>Weekly video classroom hour to discuss topics, assignments, and Q&A https://utep-edu.zoom.us/j/9343262905</td>
</tr>
<tr>
<td>Module 1, Week 1 Discussion 1</td>
<td>Welcome to the SE 5346 System Architecture course. Your first activity is to introduce yourself to your classmates and to your Instructor. State your expectations for what you expect to learn from this class. Please include your UTEP email address so that group team members can make first contact with you.</td>
</tr>
</tbody>
</table>
| Module 1, Week 1 Assignment 1 | In your own words, explain the relationships / dependencies between the terms:
• System
• Engineered System
• System of Interest
• System Element
• Enabling System
• System Life Cycle |
| Module 1, Week 1 Group Assignment 1 | **Team Communication Infrastructure**
As a team, you need to create an infrastructure to facilitate both team communication and virtual space to share and control your team documents. Because the team may meet at least twice a week, you need to reach consensus on which days and times to meet. In addition, the team needs to create rules for managing the working meetings and the expected behavior for each member; for example, delivering quality work, fulfilling individual commitments, and conducting professional and respectful team communication at all times. Submit a document that describes your Team Communication Infrastructure and selected project. |
| Module 1, Week 2 Syllabus Test | **Syllabus Test**
This test covers the content of the syllabus relating to student conduct in the course. The test does not cover details of particular assignments due for a given module. The test consists of 15 multiple choice question with 5 possible answers at 2 points each for a maximum score of 30 points. The test is open book and will last 60 minutes. Only one test attempt is allowed. |

Module 1, Week 2: Systems Foundation and Stakeholder Requirements

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
</table>
| Module 1, Week 2 Readings and Lesson Presentations | **Required Reading**
1. SEBoK v2.5 Part 3, Life Cycle Models
2. SEBoK v2.5 Part 3, Life Cycle Process Models: Vee
3. SEBoK v2.5 Part 3, Life Cycle Process Models: Iterative
4. [Explaining Constraints.docx](#) |
| Module 1, Week 2 Video Classroom | Weekly video classroom hour to discuss topics, assignments, and Q&A https://utep-edu.zoom.us/j/9343262905 |
| Module 1, Week 2 Discussion 2 | Provide insightful answers to the following questions:
1. How would you explain the shape of the “Vee” Life Cycle Model in the form of the letter “V”?
2. What are the relative advantages / disadvantages of the Incremental Life Cycle Model as compared to the Evolutionary Life Cycle Model? |
| Module 1, Week 2 Assignment 2 | Provide insightful responses to the following: |
Module 2, Week 3: System Functionality

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 2, Week 3 Readings and Lesson Presentations</td>
<td>Required Reading</td>
</tr>
</tbody>
</table>
| | 1. INCOSE Handbook 4e 9.4.2.2
2. SE 5346 Use Case Lecture.pptx
3. Fundamentals of use cases: https://www.bridging-the-gap.com/what-is-a-use-case/
6. How to draw use case diagrams: https://online.visual-paradigm.com/diagrams/tutorials/use-case-diagram-tutorial/
7. How to draw use case diagrams: https://www.youtube.com/watch?v=zMVo7M-E |
| **Module 2, Week 3 Video Classroom** | Weekly video classroom hour to discuss topics, assignments, and Q&A https://utep-edu.zoom.us/j/9343262905 |
| **Module 2, Week 3 Discussion 1** | Read the following article: https://sc eweb.uhcl.edu/helm/RationalUnifiedProcess/process/modguide/md_ucmod.htm
Provide insightful answers to the following questions:
1. The “What Versus How” dilemma discussed in this article mentions the dependence on the background to determine where use cases should start and end. For the case of describing use cases at the system boundary, discuss where use cases should start and end. In other words, considering a complete system analysis, where in the analysis does a use case start, and where in the analysis does a use case end? (Note: Most articles about use cases discuss from the standpoint of software engineering. These articles still have value, but have to be considered from the standpoint of systems engineering.) P.S. There appears to be an error in the article, where it SHOULD say “Where do features end and use cases begin...”
2. The author of this paper suggests avoiding degenerating the use case model into a functional decomposition. What is functional decomposition and why is it to be avoided in use case modeling? |
<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 2, Week 3</td>
<td></td>
</tr>
<tr>
<td>Assignment 1</td>
<td>Perform an internet survey of the pros and cons of using use cases in system (or software) analysis. “Internet survey” means to go out to the internet and find your own sources of material for this assignment. Present your interpretation of the three strongest pros and three strongest cons as identified in the internet resources you researched.</td>
</tr>
<tr>
<td>Group Assignment 1</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Develop a set of System Requirements from your existing Stakeholder requirements.</td>
</tr>
<tr>
<td>2.</td>
<td>Using PowerPoint, develop a requirements diagram that includes your Stakeholder requirements.</td>
</tr>
<tr>
<td>3.</td>
<td>Add your System requirements to the requirements diagram.</td>
</tr>
<tr>
<td>4.</td>
<td>Show the traceability between your System requirements and the Stakeholder requirements.</td>
</tr>
<tr>
<td>5.</td>
<td>Provide a screenshot of your final requirements diagram.</td>
</tr>
<tr>
<td>6.</td>
<td>Develop a set of use cases for the following ATM use cases</td>
</tr>
<tr>
<td>a.</td>
<td>Check Balance</td>
</tr>
<tr>
<td>b.</td>
<td>Withdraw Cash</td>
</tr>
<tr>
<td>c.</td>
<td>Make Deposit</td>
</tr>
<tr>
<td>d.</td>
<td>Transfer Funds</td>
</tr>
<tr>
<td>7.</td>
<td>Provide a screenshot of your final use case diagram.</td>
</tr>
<tr>
<td>8.</td>
<td>Produce a Use Case Description document for each of the above uses cases.</td>
</tr>
</tbody>
</table>

Module 2, Week 4: System Functionality

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Readings and Lesson Presentations</td>
<td>Required Reading</td>
</tr>
<tr>
<td>1.</td>
<td>INCOSE Handbook 4e Sections 9.3</td>
</tr>
<tr>
<td>5.</td>
<td>Description of Cohesion and Coupling: https://www.javatpoint.com/software-engineering-coupling-and-cohesion</td>
</tr>
<tr>
<td>Video Classroom</td>
<td>Weekly video classroom hour to discuss topics, assignments, and Q&A https://utep-edu.zoom.us/j/9343262905</td>
</tr>
<tr>
<td>Discussion 2</td>
<td>Provide insightful answers to the following questions:</td>
</tr>
<tr>
<td>1.</td>
<td>The use of functional decomposition was discouraged when constructing use cases. But now we are beginning to look inside the system boundary (white-box view). Explain why functional decomposition is discouraged in use case analysis, but welcome in functional analysis of the system.</td>
</tr>
<tr>
<td>2.</td>
<td>Explain why it is desired to have high (or tight) cohesion and low (or loose) coupling when discussing system functionality.</td>
</tr>
</tbody>
</table>
Module 2, Week 4
Assignment 2
Identify three critical insights into the architecture of a system that N2 diagrams expose and how this information can be exploited to improve the system architecture.

Module 2, Week 4
Group Assignment 2
For each use case on your group project,
1. Identify the functions involved in your project
2. Decompose the functions
3. Provide a text description of the functions
4. Construct a functional hierarchy diagram
5. Construct an N2 diagram for the entire system

Module 2, Week 4
Module Test
This test covers reading assignments, discussions, individual assignments, group assignments, and presentations in the module.

Module 3, Week 5: Architecture Frameworks and Modeling Methodologies

Module 3, Week 5
Readings and Lesson Presentations
Required Reading
4. SE 5346 Enterprise Architecture and the Zachman Framework.pdf
5. SE 5346 Unified Architecture Framework.pdf
6. Applying Unified Architecture Framework (UAF) for Systems of Systems Architectures; link follows: https://incoseuk.org/Normal_Files/DownloadFile?FPATH=vOOp23mOhetDqZf6FrUGN9fxdwtvyQ1CQHX0jo5Yw1zSEp7Vx38p/ULQ1j1wkTlaRq6v7x5tU0J+N+jWDCmmeq95NzoZoxfBp0FhpBTt4rE=

Module 3, Week 5
Video Classroom
Weekly video classroom hour to discuss topics, assignments, and Q&A
https://utep-edu.zoom.us//9343262905

Module 3, Week 5
Discussion 1
2. In Section 3, you will find a list of Viewpoints and Models. Identify three DoDAF Viewpoints. Within the Capability, Operations, and Services viewpoints, identify three models. Briefly describe what each model is attempting to convey to the reader of the architecture description.
3. In the article “Conceptual, Logical, Physical: It Is Simple”, John A. Zachman offers his thoughts about the location in his Framework for the Conceptual, Logical, and Physical models. Provide a crisp and concise explanation of the relationship of these models to his framework.
4. How does the UAF compare to the Zachman Framework for Enterprise Architecture? How are they similar (apart from the obvious grid structure)? How are they different?

Module 3, Week 5
Assignment 1
1. In the article “Architecture is Architecture is Architecture”, John A. Zachman says that the Roman Coliseum is NOT architecture. Explain why it is not. Explain what “implementation” means. Explain what “an instance” is.
2. Explain what is meant by “reification”.
3. What kind of architecture problems are best service by the Zachman Framework? What kind are best served by the UAF? Does it matter?
<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Module 3, Week 5**
Group Assignment 1 | 1. For your group project, identify two elements from your architecture for each of the six interrogatives of the Zachman Framework for the Architect perspective. If your architecture does not already have two for each interrogative, come up with additional new ones.
2. Between the UAF and the Zachman Framework, which would you choose to develop the AD for your group project? Why? Discuss with your group and come up with a consensus opinion. |

Module 3, Week 6: Architecture Frameworks and Modeling Methodologies

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Module 3, Week 6 Readings and Lesson Presentations** | **Required Reading**
1. [SE 5346 Modeling Methodology.pptx](file:///Users/user/Downloads/SE%205346%20Modeling%20Methodology.pptx)
2. No Magic paper on MagicGrid methodology
3. No Magic presentation on MagicGrid methodology, with example diagrams
4. Note that the description of MagicGrid in (1.) is based on a 2018 reference which uses an updated notation for the cells of the grid compared to (3.) which uses an earlier notation (Example: (1.) Black Box/White Box versus (3.) Problem) (Example: (1.) System/Subsystem/Component versus (3.) Solution). |
| **Module 3, Week 6 Video Classroom** | Weekly video classroom hour to discuss topics, assignments, and Q&A
https://utep-edu.zoom.us/j/9343262905 |
| **Module 3, Week 6 Discussion 2** | 1. In Figure 8 of the No Magic paper on MagicGrid methodology (reading resource 2), the figure shows an <<abstraction>> dependency relationship from the Components in the Solution domain up to Subsystems in the Problem domain. In particular, the figure says that Subsystem 1 is an abstraction of Component 3. Explain what is meant by this abstraction relationship. (Hint: Requires understanding what is meant by an abstract concept.)
2. Explain why Subsystem 2 is an abstraction of two Components in the Solution domain. (Hint: The answer would be seen if a BDD would show how the Solution components relate to the White Box Subsystems.)
3. There appears to be an error in the abstraction arrangement shown in the figure between the White Box view and the Solution view under the Structure column. Do you see anything wrong here? (Hint: Compare the interfaces in the Problem domain, White Box view, against the interfaces in the Solution view.) If you see a problem, describe what the problem is, and how it should be repaired. |
| **Module 3, Week 6 Assignment 2** | 1. As stated in the No Magic paper on the MagicGrid methodology (reading resource 2), many MBSE methodologies are formulated around an architecture framework that is grid-oriented, meaning that the framework is developed around cells in a column-row organization. In MagicGrid, the columns represent the four “Pillars of SysML”: Requirements, Behavior, Structure, and Parametrics. In MagicGrid, the rows (viewpoints) are established around the Problem side (Black Box, followed by White Box), and the Solution side. The rows combined represent a layering of abstraction. What exactly is meant by “Layer of Abstraction”?
2. If the rows are organized in layers of abstraction, in which direction is the abstraction oriented? In other words, going down are we becoming more or less abstract? |
Module 3, Week 6
Group Assignment 2

1. Before a product can be accepted, it must be tested to prove it satisfies its Performance Requirements. Performance Requirements usually involve critical performance parameters that the system must meet in order to deliver satisfactory operations. For your group project, identify a set of six Performance Requirements that your system must satisfy.

2. Proving that the system satisfies the Performance Requirements involves establishing a set of Measures of Effectiveness (MOEs) against which the system is measured under testing. For each of the six system performance requirements that the system must satisfy, identify the MOEs that would go into a <<block>> in the system architecture, as shown in slide 23 of Reading Resource #3 (No Magic presentation on MagicGrid methodology).

3. Describe how your system would be evaluated (tested) to show that it meets each of the six MOEs.

Module 4, Week 7: Architecture Description and Architecture Management Plan

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
</table>
| Module 4, Week 7 Readings and Lesson Presentations | Required Reading
- SE 5346 Architecture Description.pptx
- Architecture Management Plan Template.docx
- INCOSE Handbook 4e, Sections 4.4.1.4, 4.4.2.2
- A Conceptual Model of Architecture Description at:
 - http://www.iso-architecture.org/ieee-1471/cm/
- Sections of the ISO/IEC/IEEE 42010 FAQ, these all go to the same web page: http://www.iso-architecture.org/ieee-1471/faq.html |
| Module 4, Week 7 Video Classroom | Weekly video classroom hour to discuss topics, assignments, and Q&A https://utep-edu.zoom.us/j/9343262905 |
| Module 4, Week 7 Discussion 1 | 1. ISO/IEC/IEEE 42010 describes the elements that constitute and Architecture Description in very general terms without telling you exactly what Viewpoints, Views, Model Kinds, etc. to produce in an Architecture Description, while this is done in great detail in the DoDAF. Explain why ISO/IEC/IEEE 42010 does not go into this level of detail while DODAF does. |
Module 4, Week 7 Assignment 1
1. When reviewing Stakeholder requirements, what would three primary items you look for in them to identify the system boundary?
2. What is the primary value that Architecture Frameworks with their specification of Viewpoints and Views bring to the architect to improve workflow and products?
3. What is the difference between a System, its Architecture, and the Architecture Description?

Module 4, Week 7 Group Assignment 1
1. Using the provided Architecture Management Plan Template, populate the following sections
 - 1.1 Scope
 - 2.1 External Documents
 - 3.2 System Overview
 - 3.3 Known System External Interfaces
 - 4.1 Architecture Development Approach
 - 4.2 Architecture Description
 - 5.2 System Architecture Development Work Flow

Module 4, Week 8: Multi-Objective Decision Analysis

Activity

<table>
<thead>
<tr>
<th>Activity</th>
<th>Required Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 4, Week 8 Readings and Lesson Presentations</td>
<td>1. J.G.Artus Lecture 50 - Value Modeling and Multi-Objective Decision Analysis</td>
</tr>
<tr>
<td></td>
<td>2. J.G.Artus Lecture 51 - MODA Example Studies</td>
</tr>
<tr>
<td>Module 4, Week 8 Video Classroom</td>
<td>Weekly video classroom hour to discuss topics, assignments, and Q&A</td>
</tr>
<tr>
<td></td>
<td>https://utep-edu.zoom.us/j/9343262905</td>
</tr>
</tbody>
</table>

Activity

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 4, Week 8 Discussion 2</td>
<td>1. When performing a Multi-Objective Decision Analysis, what are the benefits of starting with the qualitative value model first?</td>
</tr>
<tr>
<td></td>
<td>2. When addressing a Multi-Objective Decision Analysis, what are the differences between the terms Value Measure, Value Score, Value Function, and Value?</td>
</tr>
<tr>
<td></td>
<td>3. When performing a Multi-Objective Decision Analysis, traditional weights only account for the influence of Importance of a value measure. Swing Weights account for the influence of both Importance and the Range of the Measurement Scale. Why is the influence of Range of the Measurement Scale significant to value weighting?</td>
</tr>
<tr>
<td>Module 4, Week 8 Assignment 2</td>
<td>1. Develop a list of ATM components that includes those components that affect value measures.</td>
</tr>
<tr>
<td></td>
<td>2. For the components identified in Part 1, identify three (3) possible variants of the component.</td>
</tr>
<tr>
<td></td>
<td>3. For the component variants identified in Part 2, construct a set of nine (9) solution alternatives.</td>
</tr>
<tr>
<td>Activity</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Module 4, Week 8</td>
<td></td>
</tr>
<tr>
<td>Group Assignment 2</td>
<td>1. Review the submissions of your group members for assignments M4W08_D2 Discussion Assignment Part 1 (ATM Value Hierarchy) and M4W08_A2 Individual Assignment Parts 1 (ATM Component List), 2 (ATM Component Variant List), and 3 (ATM Solution Alternatives List), and come to a consensus of the best makeup of these design elements from the concepts developed by group members.</td>
</tr>
<tr>
<td></td>
<td>2. Create a Measure Scorecard for the nine (9) solution alternatives. Again, you will have to use your imagination and come up with a set of bogus numbers, since you are not experienced in ATM design. However, the numbers have to make sense in the context of the value measures you defined in your Value Hierarchy.</td>
</tr>
<tr>
<td></td>
<td>3. Create a set of Value Function definitions for each of the Value Measures identified in Part 1.</td>
</tr>
<tr>
<td></td>
<td>4. Create a set of Value Scorecard for each Solution Alternatives identified in Part 1, and for each of the Value Measures identified in Part 1.</td>
</tr>
<tr>
<td></td>
<td>5. Create a Swing Weight Matrix including each of the Value Measures identified in Part 1.</td>
</tr>
<tr>
<td></td>
<td>6. Use the Additive Value Model to arrive at final values for each solution alternative.</td>
</tr>
<tr>
<td>Module 4, Week 8</td>
<td>Module 4 Test</td>
</tr>
<tr>
<td>Module Test</td>
<td>This test covers reading assignments, discussions, individual assignments, group assignments, and presentations in the module.</td>
</tr>
<tr>
<td>Module 5, Week 9: Systems Thinking</td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Description</td>
</tr>
<tr>
<td>Module 5, Week 9</td>
<td>Readings and Lesson Presentations</td>
</tr>
<tr>
<td>Required Reading</td>
<td>1. J.G.Artus Lecture 01 Introduction to Systems Architecture</td>
</tr>
<tr>
<td></td>
<td>2. J.G.Artus Lecture 02 Systems Thinking</td>
</tr>
<tr>
<td></td>
<td>• https://jgartus.net/wp-content/uploads/2022/02/Lecture-02-Systems-Thinking-v01.pdf</td>
</tr>
<tr>
<td></td>
<td>4. Wikipedia page “List of Auto Parts”</td>
</tr>
<tr>
<td></td>
<td>• https://en.wikipedia.org/wiki/List_of_auto_parts</td>
</tr>
<tr>
<td>Module 5, Week 9</td>
<td>Video Classroom</td>
</tr>
<tr>
<td>Weekly video classroom hour</td>
<td>to discuss topics, assignments, and Q&A</td>
</tr>
<tr>
<td></td>
<td>• https://utep-edu.zoom.us/j/9343262905</td>
</tr>
<tr>
<td>Module 5, Week 9</td>
<td>Discussion 1</td>
</tr>
<tr>
<td>Provide insightful answers to the following questions:</td>
<td></td>
</tr>
<tr>
<td>Part 1</td>
<td>1. Read the Leveson paper “Medical Devices: The Therac-25” (Reading Resource 3), Sections 1, 2, and 4.</td>
</tr>
<tr>
<td></td>
<td>2. Identify two Awareness-Understanding issues from each of the eleven causal factors cited in Section 4 of the paper.</td>
</tr>
<tr>
<td>Part 2</td>
<td>1. For each of the issues in Part 1, characterize them as being representative of one of the cells in the Awareness-Understanding Matrix.</td>
</tr>
</tbody>
</table>
Module 5, Week 9 Assignment 1

Part 1
1. Read the Leveson paper “Medical Devices: The Therac-25” (Reading Resource 3), Sections 3 thru 3.5.1.
2. Refer to the extracts from the paper that are found in the assignment template.
3. Indicate in the table provided in the template, by placing an “X” in the appropriate column, what type of emergence the incidents described in these extractions represent:
 a. Anticipated, Desired (AD)
 b. Anticipated, Undesired (AU)
 c. Unanticipated, Desired (UD)
 d. Unanticipated, Undesired (UU)
4. Provide rationale for your selection.

Part 2
1. You are an engineer responsible for drafting the section of your company’s Architecture Management Plan that addresses aspects of the Architecture Development Process at your company. You are tasked with providing the descriptive text that goes along with the diagram in the assignment template.
2. Provide that descriptive text in the table provided.

Module 5, Week 9 Group Assignment 1

Part 1
1. Review the Wikipedia List of Auto Parts (Required Reading 4).
2. Develop a component hierarchy diagram for an automobile.
3. The group shall decide the blocks that make up Tiers 2 and 3 by evaluating the Wikipedia parts list.
4. The hierarchy diagram can be developed in multiple diagrams.
5. Take screenshots of each diagram and paste into this template document.

Part 2
2. Identify at least one function that each of the components at the lowest level implement.
3. Complete the table in the assignment template that, when completed, lists the functions that are performed by the components (the entities of form).

Module 5, Week 10: Complex Systems

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 5, Week 10 Readings and Lesson</td>
<td>Required Reading</td>
</tr>
<tr>
<td>Presentations</td>
<td>1. J.G.Artus Lecture 03 Complex Systems</td>
</tr>
<tr>
<td></td>
<td>• https://jgartus.net/wp-content/uploads/2022/02/Lecture-03-Complex-Systems-v01.pdf</td>
</tr>
<tr>
<td></td>
<td>• https://www.youtube.com/watch?v=N7oz366X0-8</td>
</tr>
<tr>
<td></td>
<td>• https://hbr.org/2007/11/a-leaders-framework-for-decision-making</td>
</tr>
<tr>
<td></td>
<td>4. Cook, R., How Complex Systems Fail</td>
</tr>
<tr>
<td></td>
<td>• https://how.complexsystems.fail/</td>
</tr>
<tr>
<td>Module 5, Week 10 Video Classroom</td>
<td>Weekly video classroom hour to discuss topics, assignments, and Q&A</td>
</tr>
<tr>
<td></td>
<td>https://utep-edu.zoom.us/9343262905</td>
</tr>
<tr>
<td>Activity</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| **Module 5, Week 10 Discussion 2** | **Part 1**
1. Consider the architecture development of the system types listed in the assignment template.
2. For each system type decide which of the following architecture development approaches you would take
 a. Top-Down
 b. Bottom-Up
 c. Outer-In
3. Explain your rationale for the choice you make.

Part 2
1. Consider the process of structural decomposition.
2. Discounting the normal constraints of budget and schedule, what are some criteria that would guide you, as an architect, to be able to decide at what point to stop decomposing a system structure.
 a. Hint: Think about what are the architect’s objectives in doing the decomposition in the first place. When those objectives are met, there is no reason to continue the decomposition. Therein lies your criteria.
3. Come up with at least two criteria.

Module 5, Week 10 Assignment 2

Part 1
1. For the parts you identified for your ATM project, construct a SysML Block Definition Diagram (bdd) for the ATM system using PowerPoint or similar drawing tool.
2. Provide a screenshot of your SysML bdd.
3. For the parts you identified for your ATM project, construct a SysML Internal Block Diagram (ibd) using PowerPoint or similar drawing tool for the ATM system that illustrates one possible configuration of the parts defined in your bdd.
4. Provide a screenshot of your SysML ibd.

Part 2
1. Create a taxonomy as a SysML bdd for types of road vehicles using PowerPoint or similar drawing tool.
2. Provide a screenshot of your taxonomy of road vehicles.

Part 3
1. Recursion occurs when an approach or process used at one level of a system is used again at other levels within the system.
2. Describe how the figure in the template illustrates the concept of recursion.

Module 5, Week 10 Group Assignment 2

Part 1
1. Review the operational situation scenarios provided in the template.
2. Discuss the scenarios among members of the group.
3. Assess which domain in the Cynefin Framework each situation scenario typifies.
4. Fill out the table in the assignment template to provide your responses.
5. Provide rationale as to why you think this is the correct choice.

Part 2
1. Review the technical paper “How Complex Systems Fail” by Richard Cook (Required Reading 4).
2. For each of the scenarios presented in Part 1, identify which of the findings in this paper apply to each scenario.
 a. Identify at least one finding for each scenario.
Module 6, Week 11: Elements of Form

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
</table>
| Module 6, Week 11 Readings and Lesson Presentations | Required Reading
1. J.G.Artus Lecture 04 Analysis of Form
 - https://jgartus.net/wp-content/uploads/2022/02/Lecture-04-Analysis-Of-Form-v01.pdf
2. United States Patent No. US 6,206,284
| Module 6, Week 11 Video Classroom | Weekly video classroom hour to discuss topics, assignments, and Q&A https://utep-edu.zoom.us/j/9343262905 |
| Module 6, Week 11 Discussion 1 | 1. Why is form required before function can be realized?
2. According to the authors of “System Architecture”, what is “structure”?
3. Explain, in your own words, what is the difference between Formal Entities and Operands?
4. Why is form by itself not considered to be capable of enabling the emergence of desirable behavior?
5. How does structure contribute to emergence?
6. Describe an example of dynamic structure. |
| Module 6, Week 11 Assignment 1 | **Part 1**
1. Identify 5 major elements of form of the ATM System
2. For each of these, identify a function that the element is instrumental in producing
3. For each of these, identify an operand associated with the element of form or the element of function
4. Explain the relationship of the operand to the element of form and/or function
5. Explain how this object qualifies as an operand
Part 2
1. Identify 10 elements of form for the ATM System
2. Classify these 10 elements of form in terms of
 a. Most important parts
 b. Moderately important parts
 c. Least important parts
3. Explain why you classified each part in the chosen category |
| Module 6, Week 11 Group Assignment 1 | **Part 1**
1. Review the description of United States Patent No. US 6,206,284
2. Construct a Connectivity Structure Diagram that includes the following components
 a. 10a Box
 b. 10b Door
 c. 22 Cash Dispensing Output
 d. 24 Cash Slot
 e. 28 Check Deposit Intake |
Module 6, Week 12: Elements of Function

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Part 1** | 1. What differentiates external functionality from internal functionality?
2. How is system value related to emergence?
3. What is the difference between a good and a service?
4. An architecture is often in the difficult position of balancing two roles: company representative, and customer representative. Explain the conflict that exists between satisfying these two roles simultaneously. |
| **Part 2** | 1. For the ATM system, give three examples of external functionality.
2. For the ATM system, give three examples of internal functionality.
3. For both external and internal functionality, identify the element of form that implements the function.
4. For each of the examples of external ATM functionality, describe a measure of performance that the system must present.
5. For each of the examples of internal ATM functionality, describe an operand that is involved in the execution of the internal function.
6. For each of these operands, indicate whether they are created, modified, or consumed.
7. For each of these operands, indicate whether they are Value-Related or not.
8. For each of these operands, identify the process involved in the creation, modification, or consumption of the operand. |

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Part 1** | 1. Consider the processes and operands involved in a “Debit Card Verification Function” of the ATM System
2. Identify at least 5 processes involved in the authentication of a customer’s debit card
3. Identify the operands associated with the identified processes
4. Construct a Process-Operand (PO) Array, using PowerPoint or other drawing tool, in which the final value-related operand is the presentation of a menu of ATM options. |
Module 6, Week 12

Group Assignment 2

Part 1
1. Consider the processes and operands involved in a “Cash Withdrawal Function” of the ATM System.
2. Identify at least 5 processes involved in the cash withdrawal transaction.
3. Identify the operands associated with the identified processes.
5. Indicate the value pathway (using arrows) involving processes and operands along which value develops.

Part 2
1. Using the results of Part 1, create an OPM diagram.

Module 7, Week 13: SysML State Machine Diagram and Parametric Diagram

This material may likely be replaced with new material from *System Architecture* by Edward Crawley, Bruce Cameron, and Daniel Selva. The instructor will inform you in advance of any changes to be made for Module 7.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 7, Week 13</td>
<td>Readings and Lesson Presentations</td>
</tr>
<tr>
<td>Readings and Lesson Presentations</td>
<td>Required Reading</td>
</tr>
<tr>
<td></td>
<td>1. SE 5346 SysML Introduction.pptx</td>
</tr>
<tr>
<td></td>
<td>2. SE 5346 SysML State Machine Diagrams.pptx</td>
</tr>
<tr>
<td></td>
<td>3. SE 5346 Getting Started with Cameo Systems Modeler Guide v06.docx</td>
</tr>
<tr>
<td></td>
<td>4. Delligatti, SysML Distilled, Chapter 8, State Machine Diagrams</td>
</tr>
<tr>
<td></td>
<td>5. https://www.youtube.com/watch?v=Il3V3KOFvTM</td>
</tr>
<tr>
<td></td>
<td>In the assignments for this module, you will make use of Cameo Systems Modeler</td>
</tr>
<tr>
<td></td>
<td>▪ Student Workbook (Lab Manual)</td>
</tr>
<tr>
<td>Module 7, Week 13</td>
<td>Video Classroom</td>
</tr>
<tr>
<td></td>
<td>▪ Weekly video classroom hour to discuss topics, assignments, and Q&A</td>
</tr>
<tr>
<td></td>
<td>https://utep-edu.zoom.us/j/9343262905</td>
</tr>
<tr>
<td>Module 7, Week 13</td>
<td>Discussion Assignment 1</td>
</tr>
<tr>
<td></td>
<td>1. Review the YouTube video on constructing SysML State Machine Diagrams,</td>
</tr>
<tr>
<td></td>
<td>including construction of supporting SysML Block Definition and Activity</td>
</tr>
<tr>
<td></td>
<td>Diagrams for a simple flashlight.</td>
</tr>
<tr>
<td></td>
<td>2. Answer the following questions regarding the flashlight model by filling in</td>
</tr>
<tr>
<td></td>
<td>the appropriate boxes in the template.</td>
</tr>
<tr>
<td></td>
<td>▪ The modeler created very simple activity diagrams to generate the signals:</td>
</tr>
<tr>
<td></td>
<td>On, Off, Tick. Why was an activity diagram not created for the Push signal?</td>
</tr>
<tr>
<td></td>
<td>(Hint: On and Off are signals sent by Button to Timer, Tick is a signal sent</td>
</tr>
<tr>
<td></td>
<td>by Timer to Light)</td>
</tr>
<tr>
<td>Activity</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Construct a State Machine Diagram in Cameo for a household Refrigerator that dispenses either chilled water, cubed ice, or crushed ice, depending on the user selection at the user interface panels. Your states should include states like “Dispensing Water”, “Dispensing Cubed Ice”, etc. Think in terms of the User UI Panel sending signals to the refrigerator components to deliver what the user requests. Use the Vending Machine example from the Guidance document (reproduced here) to guide your design approach.</td>
<td></td>
</tr>
<tr>
<td>Construct a State Machine Diagram in Cameo for your ATM Project that handles user transactions. Your states should include states like “Depositing Funds”, “Checking Balance”, etc. Think in terms of the User UI Panel sending signals to the ATM to perform the tasks that the user requests. Use the Vending Machine example from the Guidance document (reproduced here) to guide your design approach.</td>
<td></td>
</tr>
</tbody>
</table>

Module 7, Week 14: SysML State Machine Diagram and Parametric Diagram

This material may likely be replaced with new material from System Architecture by Edward Crawley, Bruce Cameron, and Daniel Selva. The instructor will inform you in advance of any changes to be made for Module 7.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Reading</td>
<td></td>
</tr>
<tr>
<td>SE 5346 SysML Introduction.pptx</td>
<td></td>
</tr>
<tr>
<td>SE 5346 SysML Parametric Diagrams.pptx</td>
<td></td>
</tr>
<tr>
<td>SE 5346 Getting Started with Cameo Systems Modeler Guide v06.docx</td>
<td></td>
</tr>
<tr>
<td>Delligatti, SysML Distilled, Chapter 9, Parametric Diagrams</td>
<td></td>
</tr>
<tr>
<td>Weekly video classroom hour to discuss topics, assignments, and Q&A</td>
<td></td>
</tr>
<tr>
<td>https://utep-edu.zoom.us/j/9343262905</td>
<td></td>
</tr>
<tr>
<td>(All students get 20 points whether you participate in the survey or not.)</td>
<td></td>
</tr>
<tr>
<td>Create a Parametric Diagram that represents the total power draw of a common electric motor</td>
<td></td>
</tr>
<tr>
<td>Ensure the Electric Motor system element has the following value properties:</td>
<td></td>
</tr>
<tr>
<td>a. current:Ampere</td>
<td></td>
</tr>
<tr>
<td>b. dutyCycle:Real</td>
<td></td>
</tr>
<tr>
<td>c. v:Volt</td>
<td></td>
</tr>
<tr>
<td>d. elapsedTime:Second</td>
<td></td>
</tr>
<tr>
<td>Your deliverables should include:</td>
<td></td>
</tr>
<tr>
<td>a. BDD showing the Electric Motor block with value properties</td>
<td></td>
</tr>
<tr>
<td>b. BDD (same or new) showing Total Power Analysis block</td>
<td></td>
</tr>
</tbody>
</table>
Module 7, Week 14

Group Assignment 2

1. Review your Group’s submission for the Module 7, Week 14, Discussion Assignment 2.
2. Collaborate to come up with the best version of the BDD(s) and Parametric Diagram for an Electric Motor for the Cash Dispenser of your ATM design.
3. Create a Parametric Diagram that represents the total power draw of a common electric motor.
4. Ensure the Electric Motor system element has the following value properties:
 a. current: Ampere
 b. dutyCycle: Real
 c. v: Volt
 d. elapsedTime: Second
5. Your deliverables should include:
 a. BDD showing the Electric Motor block with value properties
 b. BDD (same or new) showing Total Power Analysis block
 c. BDD (same or new) showing Value Types for the Electric Motor value properties
 d. Parametric Diagram showing constraints, value properties, constraint parameters, and binding connectors

Module 7 Test

- This test covers reading assignments, discussions, individual assignments, group assignments, and presentations in the module.
- The test consists of 40 multiple choice questions, each of which have five possible answers. Select the best possible answer for each question. The test duration is 60 minutes. There is only one test attempt allowed.

Student Participation

Students bring a wealth of knowledge and experience to this course from their respective fields; however, students’ knowledge and technological expertise vary. The course is designed to be an enjoyable learning experience for everyone, with support for every participant. This course will immerse students into a community of practice so that students can develop skills and knowledge that facilitate their professional development.

Students are expected to complete all weekly content and to participate actively and respectfully on discussion boards, chats, and blogs, as well as synchronous or asynchronous collaboration tools where the main course concepts are discussed and class projects are developed. Furthermore, students should finish tests and deliver complete quality assignments and projects on time.

The following policies will be enforced:

- Students must complete all discussion boards assigned for each week to receive a weekly participation grade.
- Students who miss three assignments will be dropped from the course.
- Students who have little or no activity in the course will be dropped.
Students who attend the weekly video classroom sessions tend to learn more and perform better in the assignments and tests. Please make every effort to attend. During these sessions, the instructor will be available to answer any questions related to course material that you might have. Participation in these sessions is for your benefit. Your participation will not be graded, so you can be open and frank with your questions about course material. Do not be afraid to ask a dumb question, since, in learning there is no such thing as a dumb question. The instructor is here to provide you with the opportunity to learn the course material. I encourage you to take advantage of that opportunity by asking questions about course subjects you need help understanding. Any information shared by the instructor during a video classroom session will be considered course material and is subject to being included in module tests.

Assessing Student Learning

This course uses several different methods to assess student learning. A description of each method follows:

Peer Review: In a peer review, students can get the feedback they need to become more successful in a less stressful situation. For peer review to be successful, the instructor will provide clear guidelines and/or questions to be answered by the student reviewers.

Self-Reflection/Self-Evaluation: Reflection and self-evaluation develop metacognitive thinking. By engaging in self-review, students can carry their learning into other parts of their lives and take more responsibility for their own learning. Although not all students take self-evaluation seriously, those who do will benefit greatly from it.

Group Problem Solving: Students will be assigned to a group. When students work together to solve a problem or complete a project, they learn from each other and expand learning for all. Student-to-student interaction is increased, which in turn increases student learning and assignment completion. The group charter will include procedures for managing disagreements within the group; these ground rules make for a much smoother and more effective group experience for all.

Each group will designate a group leader. The group leader coordinates the activities of the group, but IS NOT responsible for performing other students’ work. The group leader resolves any technical problems, in coordination with the instructor, if necessary. Personnel problems are first handled by the group leader and then escalated to the instructor, if necessary. The group leader has the authority to assign tasks, review status, and resolve issues within his or her technical scope.

In business, all employees are required and expected to be respectful of all other employees. The same applies to students in groups. All students will be treated with respect and will be given a chance to voice their opinion within the group. The instructor, in coordination with the department and the university, will deal directly with any complaints from students related to lack of respect and lack of inclusion within the groups.

In accordance with Texas Education Code § 51 (“SB 212”), and as a UTEP employee, the instructor is bound by law to report incidences reasonably believed to constitute sexual harassment, sexual assault, dating violence, or stalking, and which is alleged to have been committed by or against a person who was a UTEP student or employee at the time of the incident. I will interpret any incident of harassment of ANY FORM by one student on any other in this course as an incident to be reported to the UTEP Title IX
Coordinator. If you feel you have been harassed by another student in this course, please inform me in confidence so that the situation may be reported to the appropriate authorities.

Tests: Tests will be available to take at Noon on test day. Check the course calendar for specific test dates. Tests will be due by 11pm on test day. Be sure to start the test far enough in advance of the test due time of 11pm in order to complete the test by 11pm. Occasionally, tests may be due on a day of the week other than Sunday. Always check the course schedule posted on Blackboard to determine the current dates for test due dates and times.

If you miss taking the test by the due date/time, you will receive zero points with no provision to take the test at a different time. Tests will be open book. However, the questions will require critical thinking in a short amount of time, so be sure you understand the course material. If you have any doubts about understanding, ask questions of your fellow students in the discussion board and at the video classroom sessions. Tests will focus on course material covered in the current module up to that point in time, possibly including material from prior modules. Tests are to be taken individually, not collaboratively.

Rubrics: Rubrics are an objective way of assessing work. They provide clear criteria that can be shared with students so that they know how they will be graded. The criteria used for each assignment will be indicated as part of assignments.

Course Rules and Policies

Ground Rules for Discussion Board Participation
You should observe the minimum word count in your discussion posting in response to the provided questions. You should also reply (with the minimum word count for each response) to the entries of at least two of your classmates for each assigned discussion (unless noted otherwise). Refer to the discussion board and course content for further details on each assignment.

Remember your place: A Web-based classroom is still a classroom, and comments that would be inappropriate in a regular classroom are likely to be inappropriate in a Web-based course as well.

This is permanent: Think carefully about the content of your message before contributing it. Once sent to the group, there is no taking it back. Members of the class and the instructor will be reading any postings.

Respect your fellow students and instructor. Respect and courtesy must be provided to classmates and to instructor at all times. Do not use inappropriate language, all capital letters, or language short cuts. No harassment, flaming, or inappropriate postings will be tolerated.

Giving feedback professionally: Write constructive feedback by addressing the idea, not the person. People may have different points, positions and believes in the aspects being discussed. The discussion must be limited to the aspects/ideas only. Personal attacks are not tolerated. When reacting to someone else's message, address the ideas, not the person. Post only what anyone would comfortably state in a face-to-face situation. Even if you disagree with another student’s argument, you can provide a counter-argument in a positive, constructive way.

Be forgiving: If someone states something that you find offensive, mention this directly to the instructor. Remember that the person contributing to the discussion is also new to this form of communication. What you find offensive may quite possibly have been unintended and can best be cleared up by the instructor.
Language: Given the absence of face-to-face clues, written text can easily be misinterpreted. Avoid the use of strong or offensive language and the excessive use of exclamation points. If you feel particularly strongly about a point, it may be best to write it first as a draft and then to review it, before posting it, in order to remove any strong language.

Test for clarity: Messages may often appear perfectly clear to you as you compose them, but turn out to be perfectly obtuse to your reader. One way to test for clarity is to read your message aloud to see if it flows smoothly. If you can read it to another person before posting it, even better.

Submit quality work. Online entries should be written in Standard Writing English with edited spelling, grammar, and punctuation. Although the grammar and spelling of a message typically are not graded, they do reflect on you, and your audience might not be able to decode misspelled words or poorly constructed sentences. It is a good practice to compose and check your comments in a word-processor before posting them.

Follow the parameters / Stick to the point: Follow the posting requirements and parameters set up by the instructor. Contributions to a discussion should have a clear subject header, and you need to stick to the subject. Don't waste others' time by going off on irrelevant tangents.

Read first, write later: Don't add your comments to a discussion before reading the comments of other students unless the assignment specifically asks you to do so. Ignoring your fellow students is rude. Avoid repetition of what someone else has already said. Add something new to the discussion. Comments related to the content of previous messages should be posted under them to keep related topics organized, and you should specify the person and the particular point you are following up on.

Quality posts get credit: There will be no credit given for answers that simply say “Yes” or “No” or something similar with no technical discussion. Posts should justify positions and provide specific examples. Students must demonstrate that they have read the assignment and their classmates' comments carefully and thoughtfully.

Meet the deadline: Be sure to post assignments in a timely fashion to receive credit for the discussion. Pay close attention to the posted deadlines. Late deliveries will receive a score of zero (0).

When work or personal events interfere with the class: As soon as you know that you may have a meeting, business travel, or other event that interferes with being able to complete and submit your homework on time, you must send me an email **IMMEDIATELY**, preferably with a one-to-two-day advanced notice, so I can take that into account when grading your work. Telling me after the fact is too late to avoid losing points on your homework. Please send the email to my UTEP address jgartus@utep.edu.

Group assignments: Students will work in groups. Students should develop soft skills to properly and effectively work as a group member. Group members are expected to be respectful of each other, have a positive attitude, deliver quality work on time, participate in peer reviews, and support other group members. All submitted group assignments shall clearly indicate who did what work. **A student can only receive credit for the group project work, if he/she is an equally contributing member of a group.**

If a group member is not working or is performing poorly or irresponsibly, the group must let the member know about the problem (**show a yellow card**), offer him/her help, and inform the instructor of the situation. If a group member continues performing poorly or irresponsibly, the group may request the instructor to remove the student from the group (**show a red card**). The group leader shall send an e-mail...
to the instructor and all group members including the affected group member indicating that a yellow or red card has been called with a brief explanation of the circumstances. Depending on the severity of the situation, the Department and/or University Title IX Coordinators may be called in to adjudicate the situation (by US Federal Law).

Role of Group Leader: In most group settings, someone with the requisite maturity needs to be appointed to make critical decisions for the group. The role of the group leader is that of organizer and promoter of good group practices. The role of the group leader is not to take on additional assignment work load. Not all people have leadership skills. Each group should discuss the group leader role and select someone who is capable of being a good leader for the group. For the selected group leader, this is an opportunity for you to practice your leadership skills. Your job is to take the steps necessary to ensure the group is well coordinated, not to bail the group out by taking on other people’s assignments for them.

Extra Credit Policy

There is no policy in this course for issuing extra credit to individual students for the purpose of bumping up from one final course grade (such as B) to another (such as A). The best assurance for receiving the grade you desire is to perform the work throughout the semester to the level of quality needed to achieve a certain final grade in the course. The instructor is a seasoned Systems Engineering professional, and the grades issued throughout the semester that result in a final grade letter issued to a student can be counted on confidently to reflect the quality of work delivered by any individual student.

There is an extra credit opportunity available to all students throughout the semester. This opportunity was described earlier in this document and is repeated here:

- **If you need help understanding a concept, reach out to your fellow students first via Discussion Board**
- **The first student that provides the definitive solution to an issue raised will earn 10 points each for the student needing the help and the student providing the first completely helpful solution**
- **The student requesting help must notify the instructor by email, indicating which other student provided the help needed**
- **Any student can earn a maximum 40 extra credit points using this mechanism**
- **Only serious problems will be considered by the instructor for earning points this way**
- **Seriousness of the issue is up to the instructor to determine**
- **If the student seeking help is unable to find the needed help via this mechanism, then please contact the instructor via email for the help needed**

Academic Dishonesty

Academic dishonesty is prohibited and is considered a violation of the *UTEP Handbook of Operating Procedures*. It includes, but is not limited to, cheating, plagiarism, collusion, and fabrication.

- Cheating can involve copying from or providing information to another student, possessing unauthorized materials during a test, or falsifying research data on laboratory reports.
- Plagiarism occurs when someone intentionally or knowingly represents another person’s words or ideas as his or her own.
- Collusion involves unauthorized collaboration with another person or group to commit any academically dishonest act.
Fabrication occurs when false information is included on a works-cited page.

Any act of academic dishonesty attempted by a UTEP student is unacceptable and will not be tolerated. Violations will be taken seriously and will be referred to the Office of Student Conduct and Conflict Resolution for possible disciplinary action. Students may be suspended or expelled from UTEP for such actions. You can find more information in the *UTEP Handbook of Operating Procedures*, under the heading “4.14: Alleged Student Scholastic Dishonesty,” and in the Regents’ Rules and Regulations.

Discrimination and Bias

As a UTEP Instructor, I, John G. Artus, do not discriminate any student from any other student on the basis of sex, race, religious affiliation, gender, age or sexual orientation, or any other personal characteristic or lifestyle preference. As a UTEP Instructor, I, John G. Artus, only discriminate one student from any other student on the basis of performance on assignments and tests.

As a UTEP student, if you seek to be “discriminated” from your peers on the basis of performance, then the better the quality of your assignment submissions and the better you prepare for tests, the better grade you will receive to discriminate you from those students who do not prepare as well as you, because there will be no other basis for discrimination between one student or another in this course.

Policy on Copyright and Fair Use

The University requires all members of its community to follow copyright and fair-use requirements. Students are individually and solely responsible for violations of copyright and fair-use laws. The University will neither protect nor defend students and will not assume any responsibility for students who violate fair-use laws. Violations of copyright laws can result in federal and state civil penalties and criminal liability, as well as disciplinary action under University policies.

Other References

- UTEP Handbook of Operating Procedures https://www.utep.edu/hoop/
- UTEP Office of Student Conduct and Conflict Resolution https://www.utep.edu/student-affairs/oscrr/
- UTEP Office of Institutional Compliance https://www.utep.edu/compliance/

Disability Statement

If you have a disability and need special accommodation, please contact the Center for Accommodations and Support Services (CASS) at 915-747-5148, send email to cass@utep.edu, or visit the office located in UTEP Union East, Room 106. Then notify me as soon as CASS has approved your request for accommodation. Otherwise, you are expected to complete all assignments and meet all deadlines as specified in this syllabus.

For additional information, please visit the CASS website at www.sa.utep.edu/cass.

COVID-19 Precautions

Please stay home if you (1) have been diagnosed with COVID-19, or (2) are experiencing COVID-19 symptoms. If you are feeling unwell, please let me know as soon as possible, and alternative instruction will be provided. The Student Health Center is equipped to provide COVID 19 testing.
The Center for Disease Control and Prevention recommends that people in areas of substantial or high COVID-19 transmission wear face masks when indoors in groups of people. The best way that Miners can take care of Miners is to get the vaccine. If you still need the vaccine, it is widely available in the El Paso area, and will be available at no charge on campus during the first week of classes. For more information about the current rates, testing, and vaccinations, please visit epstrong.org

Software Requirements
In addition to technical software identified in the section titled “Required Computer Software”, you will need the following software on your computers to efficiently work in this course. In some cases, your computer may already have some of these programs installed.

- **Adobe Acrobat Reader.** You can get the program by going to [http://www.adobe.com/] and then clicking on the icon on the center of the screen which says 'Get Adobe Reader' Follow instructions to install the reader.
- **Adobe Flash Player.** You can get the player by going to [http://www.adobe.com/] and then clicking on 'Get Adobe Flash Player'. Follow instructions to install the player.
- **Apple QuickTime Player.** You can get this player by going to [http://www.apple.com/]. Once there, click on the 'Downloads' tab on the top of the page and then click on QuickTime 'Download' and follow instructions.
- **Microsoft Office.** I recommend buying this if you do not have any word processing software or presentation software. As students, you should be able to obtain this from the Engineering Technology Center at https://www.utep.edu/engineering/etc/Software/ or https://my.apps.utep.edu/
- **Email tool** with file attachment capability. Please use your UTEP email account.
 - If you do not have a UTEP e-mail account, please get one immediately. Here is how:
 - Go to https://newaccount.utep.edu/
 - Create your account (remember that your date of birth is in the form mm/dd/yyyy: two digits for the month and day, and four digits for the year).
 - After you create your account, you must wait 48 hours, then go back to the site and click on “Check on existing account.” Enter your UTEP Student ID Number (e.g. 80XXXXXX) and date of birth, and you will get your login name and password. Please let one of us know if you have any difficulty. You may also call UTEP Technology Support at 915-747-4357.
 - The Technology Support desk hours are given below:
 - Mon-Fri 7:00am - 8:00pm (Mountain Time)
 - Sat 9:00am - 2:00pm (Mountain Time)
 - Sun 12:00pm - 5:00pm (Mountain Time)

Equipment Requirements
You **need a personal computer** to view course material, submit assignments, and take the tests at the end of the modules. You will also need to install software applications that may require administrative privileges. You should be aware that some organizations protect their computer equipment with firewalls, other security applications, and do not provide administrative privileges to their employees. If you are using a computer from your work, you may not be able to take the tests or to install software applications required in some classes; however, this is not a valid excuse for not taking a test or uploading assignments to Blackboard.
Glossary

Cyber-Harassment, or the use of a computer to cause a person harm such as anxiety, distress or psychological harm, including abusive, threatening or hateful emails and messages and the posting of derogatory information online.

Cyberbullying, or intimidating messages sent directly to the victim via email or other Internet communication mediums, and/or the use of technological means to interfere with a victim's use of the Internet such as hacking or denial of services attacks. This can also include spreading rumors about the victim in internet forums or discussion boards; subscribing the victim to unwanted online services or sending messages to others in the victim's name.

Cyberstalking, or threatening behavior or unwanted advances directed at another using the Internet and other forms of online and computer communications. With personal information becoming readily available to an increasing number of people through the Internet and other advanced technology, state legislators are addressing the problem of stalkers who harass and threaten their victims over the World Wide Web.

Flaming, or hostile and insulting interaction between internet users. It is frequently the result of the discussion of heated real-world issues such as politics, religion, and philosophy, or of issues that polarize subpopulations, but can also be provoked by seemingly trivial differences.

Deliberate flaming, as opposed to flaming as a result of emotional discussions, is carried out by individuals who are specifically motivated to incite flaming. Usually, are subtler than their counterparts, or trolls, who also post inflammatory messages in an online community. Their primary intent is to provoke readers into an emotional response and disrupt normal, on-topic, discussion.

Plagiarism, or the presentation of another person's work as your own, whether you mean to or not (i.e. copying parts of or whole papers off the Internet).

Collusion, or lending work to another person to submit as his or her own.

Fabrication, or deliberately creating false information on a works cited page.