MATH 2313 Syllabus **Fall 2020**
MATH 2313 Asynchronous with live sessions on TR 10-10:50 am ONLINE

Instructor: Julio César Urenda Castañeda
Office: MS Teams: Office
Hours: MW 9:00am-10:20am or by appointment
email: jcurenda@utep.edu
phone: 915-747-7005

Teaching Assistant: TBA
Office: TBA
Hours: TBA
email: TBA@miners.utep.edu

Online Course Access Points
Announcements: Piazza
Homework and Quizzes: Gradescope
Live Sessions Blackboard→Virtual Room→BCUltra→Calculus III [ML-PS]

Course Objectives:
Upon successful completion of the course, you will identify the components that make a finite-dimensional real vector space and its associated operations. You will construct vector-valued functions connected with parametrization of curves, surfaces, and solids. You will calculate the partial and directional derivatives of functions of several variables. Besides, you will get familiar with the theorems of continuity and differentiability of functions of many real variables. You will solve optimization problems by application of derivative tests and the method of Lagrange multiplier.

You will sketch and parametrize regions in \mathbb{R}^n for small n. Moreover, you will comprehend interactions among rectangular, polar, cylindrical, and spherical coordinate systems. Additionally, you will apply methods of integration such as change of the order of integration, reparametrization of regions, and change of variable to compute area, volume, work, mass, and momenta.

Calculus III is a natural continuation of calculus I and II so you must review those materials regularly.

Textbook: MATH 2313 - Calculus III, Larson and Edwards, 10th edition, Cengage Learning 2014. Chapters. 11, 12, 13, and 14. We will skip some sections, as announced in class. The textbook is required at all class meetings.

Required Reading: Read each section that we cover in class, both before and after class. Skim the section before class, even if you do not understand it fully, to have some idea of what we’ll be doing in class. Read it more carefully after class to clarify and fill in details you missed in class.

Warning: Sometimes, we will not “cover” all the material from a section in class, but instead focus on a particular aspect of the section. In such cases, I will point out in class which other parts of the section I expect you to read on your own.

Grading We use an additive grading criterion: every assignment contains an fixed number of points, your final grade is determined by the fraction of the points you obtain over the maximum number of points available. Thus, to determine your current standing in the class, add up the points you get and divide them by the current maximum number of points. We apply the standard letter grade system based on this fraction g

- A if $0.9 \leq g \leq 1.0$
- B if $0.8 \leq g < 0.9$
- C if $0.7 \leq g < 0.8$
- D if $0.6 \leq g < 0.7$
- F otherwise

Quizzes, Homework, and Participation Suggested homework problems will be assigned most class days and will generally be discussed at the next class. There will be approximately 12 quizzes, with problems taken from the homework. Quizzes are mostly closed-book, closed-notes. Missed quizzes cannot be made up, but your two lowest quiz scores will be dropped. It is very important that you do your homework before it is
discussed in class. You will only learn the material by doing it yourself, not by watching others do it for you. Mathematics is not an spectator’s game.

Partial Exams There will be three exams, exact dates will be announced in class. Makeup exams can be given only in extraordinary and unavoidable circumstances, and with advance notice.

Final The final comprehensive exam will be on December 7th – 8th

Policies

Academic dishonesty: It is UTEP’s policy, and mine, for all suspected cases or acts of alleged scholastic dishonesty to be referred to the Office of Student Conduct and Conflict Resolution for investigation and appropriate disposition. See Section II.1.2.2 of the Handbook of Operating Procedures.

COVID-19 Accommodations: Students are not permitted on campus when they have a positive COVID-19 test, exposure or symptoms. If you are not permitted on campus, you should contact me as soon as possible so we can arrange necessary and appropriate accommodations. (classes with on-campus meetings) Students who are considered high risk according to CDC guidelines and/or those who live with individuals who are considered high risk may contact Center for Accommodations and Support Services (CASS) to discuss temporary accommodations for on-campus courses and activities.

NETIQUETTE As we know, sometimes communication online can be challenging. It’s possible to miscommunicate what we mean or to misunderstand what our classmates mean given the lack of body language and immediate feedback. Therefore, please keep these netiquette (network etiquette) guidelines in mind. Failure to observe them may result in disciplinary action.

• Always consider audience. This is a college-level course; therefore, all communication should reflect polite consideration of other’s ideas.

• Respect and courtesy must be provided to classmates and to the instructor at all times. No harassment or inappropriate postings will be tolerated.

• When reacting to someone else’s message, address the ideas, not the person. Post only what anyone would comfortably state in a face-to-face situation.

• Blackboard is not a public internet venue; all postings to it should be considered private and confidential. Whatever is posted on in these online spaces is intended for classmates and professor only. Please do not copy documents and paste them to a publicly accessible website, blog, or other space.

Attendance: You are strongly encouraged to attend class every day. I expect you to arrive for class on time and to remain seated until the class is dismissed. Students who have demonstrated lack of effort will be dropped from the course with a grade of “F”. You are responsible to find out any assignment that must be made up if you get behind. My goal is for class meetings and activities to complement, rather than to echo, the textbook, and thus for every class to be worth attending.

Drop date: The deadline for student-initiated drops with a W is Friday, October 30th. After this date, you can only drop with the Dean’s approval, which is granted only under extenuating circumstances. I hope everyone will complete the course successfully, but if you are having doubts about your progress, I will be happy to discuss your standing in the course to help you decide whether or not to drop. You are only allowed three enrollments in this course, and students enrolled after Fall 2007 are only allowed six withdrawals in their entire academic career, so please exercise the drop option judiciously.

Courtesy: We all have to show courtesy to each other, and the class as a whole, during class time. Please arrive to class on time (or let me know when you have to be late, and why); do not engage in side conversations when one person (me, or another student) is talking to the whole class; turn off your cell phone (or, for emergencies, at least set it to not ring out loud), and do not engage in phone, email, or text conversations during class.

Disabilities: If you have, or suspect you have, a disability and need an accommodation, you should contact the Center for Accommodations and Support Services (CASS) at 747-5148, cass@utep.edu, or Union East room 106. You are responsible for presenting to me any CASS accommodation letters and instructions.

Exceptional circumstances: If you anticipate the possibility of missing large portions of class time, due to exceptional circumstances such as military service and/or training, or childbirth, please let me know as soon as possible.
Concept Map:

Calculus III

- Vector Products
- Lines and Planes
- Surfaces
- Non-rectangular Coordinates
- Vector-Valued Functions
- Continuity, Differentiation, and Integration
- Tangent and Normal Vectors
- Arc Length and Curvature
- Change of Variables: Jacobians
- Applications
- Vectors in the Plane and Space
- Plane and Space Geometry
- Iterated Integrals
- Area and Volume
- Functions of Several Variables
- Continuity
- Derivatives and Differentials
- The Gradient
- Optimizations: Local and Constrained
- Tangent and Normal Planes
- Area and Volume
- Iterated Integrals
- Multiple Integration