PHYS 2320 Introductory Mechanics (CRN 26080) with Open Educational Resources (OER) and other stuff (OS)

This document last updated: January 17th, 2023

Term: Spring 2023
Lecture: MW 3:00 pm – 4:20 pm LART 106

Workshops: M 9:30 am in Quinn Hall 202 (Lhaki)
T 3:30 pm in Education 318 (Salas)

Prerequisites: MATH 1411 may be taken concurrently.
I will try to give you some intuition about calculus using some computer code

Instructor: Jorge Munoz
E-mail: jamunoz@utep.edu
Office hours: W 4:30 pm – 5:30 pm or by appointment (https://jamunoz.youcanbook.me)
Office: Physical Science Building (PSCI) 312C

TA: Sonam Lhaki
E-mail: slhaki@miners.utep.edu
Coordinates:

TA: Omar Salas
E-mail: oasalascorr@miners.utep.edu
Coordinates:

Tutor: Dana Braun Szafer
E-mail: dbraunszaf@miners.utep.edu
Miner Learning Center: Library 205

Workshop Coordinator: Camden Wilson
E-mail: cawilson4@miners.utep.edu
Coordinates: M 1:30 pm – 2:30 pm PSCI 312

Lab Coordinator: Karla Carmona
E-mail: kcarmona@utep.edu
Office: PSCI 317

Grading Policy

This class is gamified, your final grade will be assigned according to how many ‘quests’ you complete. There are 5 quests and a ‘complete’ standard for each quest. Gold can be mined by participating in activities and used to help you complete quests. More details are below.

Completing 4 or 5 quests will get you an A.
Completing 3 quests will get you a B.
Completing 2 quests will get you a C.
Completing 1 quest will get you a D.
If you do not complete any quests, you will get an F.
QUESTS

1. **Scary World of Exams** (in-class during lecture time, 3 per semester, 15 points each)
 - ‘Complete’ standard: 30 points (out of 45 possible)
 - What you can get with ‘gold:’ 1 gold gets you 2 exam points

2. **Mischievous World of Quizzes** (1 per week on Wednesdays during lecture, on Blackboard, based on homework problem sets, 2 multiple choice problems per quiz, 1 point per problem, 15 quizzes total)
 - ‘Complete’ standard: 20 points (out of 30 possible)
 - What you can get with ‘gold:’ 1 gold gets you 1 quiz point

3. **Illusory World of Coding Exercises** (1 set per week on Google Collab, student assigned to random team during workshop, 2 points per workshop/exercise, due at the end of the day, 15 during the semester)
 - ‘Complete’ standard: 24 points (out of 30 possible)
 - What you can get with ‘gold:’ 1 gold gets you 2 exercise points
 - Google Form: https://forms.gle/kJk3hwi4wTPWy8427

4. **Fun World of Coding Projects** (1 project every 2 weeks on Google Collab, optionally in pairs, 4 points per project, due on Fridays end the day, 7 during the semester)
 - ‘Complete’ standard: 22 points (out of 28 possible)
 - What you can get with ‘gold:’ 1 gold gets you 2 project points

5. **Dangerous World of Final** (1 at the end of the semester, cumulative, 24 points)
 - ‘Complete’ standard: 16 points (out of 24 possible)
 - What you can get with ‘gold:’ 1 gold gets you 2 final exam points

GOLD

- Google Form: https://forms.gle/6rsN8vgbT6pxihCA
- Host a study group (for problem set, exam, project, etc.) – 2 points
- Attend a study group – 1 point
- Attend Miner Learning Center (MLC) one-on-one – 2 points
- Attend Miner Learning Center (MLC) group activity – 1 point
- Report a problem (errors on quizzes or problems, bugs on code, etc.) – 1 point
- Other opportunities might occur ad hoc

LEVELING-UP

- Homework (10 problems per week, most with solutions available on-line, not graded but quiz based on them)
- Attending lecture (not graded but will keep you on-track, code to access quizzes will be given during lecture)

Objectives

In accordance with the UTEP Catalog, in this course you will learn dynamics of particles and rigid bodies using vectors and calculus, conservation of energy and momentum, and kinetic theory. These concepts are foundational in the physical sciences and most branches of engineering and if you are taking this class, chances are you will continue to apply these concepts during the rest of your college career and in your professional career. Putting some effort into this class will pay off.

Textbook
This course uses **Open Educational Resources (OER)**. The required textbook is *Mechanics*, by Ben Crowell, which is distributed under a Creative Commons 3.0 license. This license allows you to download it, copy it, and use in this class free of charge. http://www.lightandmatter.com/mechanics/

Lecture Notes
My lecture notes largely follow the structure of *Physics for Scientists & Engineers: A Strategic Approach* 4th Edition by Randall Knight, so this book is optional to acquire. I post my lecture notes to Blackboard, so the content will be available to you even if you don’t have the book.

Homework
There will be 14 problem sets during the semester, each consisting of 10 problems. The problems come from Knight, Crowell, and sometimes I invent my own problems. Physics being physics, the concepts are exactly the same in every textbook and at the introductory level, the contents are also largely the same. I encouraged to discuss the problems with peers, TAs, professor, tutors, etc. Homework is not graded, but quizzes are based on them.

Quizzes
There will be 14 weekly quizzes during the semester, each consisting of 2 problems similar to those in the homework for that week’s homework. The quizzes will be timed on Blackboard. Access code will be provided during lecture.

Videos
We have developed our own **Open Educational Resources (OER)**. Video solutions for most homework problems are available on my YouTube Channel: https://www.youtube.com/@JorgeMunozJr

Exams
There will be 3 exams scheduled during lecture time: February 20th (kinematics), April 3rd (forces), May 1st (conservation of energy and momentum). I make the exams based on feedback from the students. Although the material tested on the exams is not rigorously cumulative, new concepts in physics are built on previous ones.

Workshop
You will be randomly assigned to a 3-person group and you will submit, as a team, answers to questions in the coding exercises for that week. To avoid freeloaders, you can report students who do not pull their own weight. If a student is reported 2 times, I will have a conversation with the student. 😞

Final
The final is on Monday May 8th 1:00 pm – 3:45 pm.

Lab
The lab is independent of the class, but there is synergism. Karla Carmona is the Lab Coordinator.

Participation
It takes time to get good at physics, and time is in short supply for everybody. Before each exam, I will request volunteers to hold student-lead review sessions (2 gold), and if you attend a student-led review session, you get 1 gold. Leads and participants have in the past found this enjoyable and useful. You can also get gold for hosting sessions for projects or homework, attending the Miner Learning Center, etc.

Attendance
Attending lecture is encouraged but not required. I value your time and I will try to provide new perspectives and intuition on physics and its role in technology, society, etc.
Collaboration
Discussing the problems with peers, tutors, etc. after attempting to solve them on your own is encouraged.

Winning strategy
The class is structured so that if you put in the effort, you will learn a lot and pass with a good grade. You are free to collaborate on the homework and you should take advantage of the resources available to you (tutoring, office hours, Bb videos, dark web, etc.) Ask questions during the lecture (it makes a difference) and during the workshop. If you take your homework seriously, you will do great on the exams. This is your class and your opinion matters, talk to me. Finally, try to enjoy the class. Understanding and exploitation of physical phenomena has revolutionized our way of life in the past few centuries.

Missed exams and other eventualities
Since there are quests and many opportunities to recover, there are no make ups for exams. Nevertheless, if you experience a situation that affects your long-term performance in the class, let me know.

Mentoring
Feel free to approach me for mentoring about your career, research ideas or opportunities, letters of recommendation, etc. I work for you and I like to do a good job, take advantage of that. Also take advantage of your peers and friends: they go along with you in life.

Blackboard
All the homework problems, slides and lecture notes, and most other materials will be uploaded to Bb. You can also check your grades for the different components of the class.

Students with Disabilities
If you have a disability and need classroom accommodations, please contact The Center for Accommodations and Support Services (CASS) at 747-5148, or by email to cass@utep.edu, or visit their office located in UTEP Union East, Room 106. For additional information, please visit the CASS website at https://www.utep.edu/student-activities/cass/. Accommodations might include but are not limited to note takers, readers, or extended time on exams and assignments. Please take care of this as soon as possible and before the first exam.

Academic dishonesty
Science is incompatible with cheating, and will not be tolerated. I have sent students to the Office of Student Conduct and Conflict Resolution for the more serious offenses, and I do it to protect our learning environment.

Weekly schedule and assignments

The emojis below tell you what is going on each week
Legend: ♥ = Quiz ⚽ = Workshop 🌵 = Project ⛅ = Exam ♨ = Final ☀ = Final

Spring Break

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture Dates</th>
<th>To do:</th>
<th>Topics (Approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan. 18</td>
<td>Quiz 0 Jan. 18</td>
<td>Intro to class mechanics</td>
</tr>
<tr>
<td>2</td>
<td>Jan 23, 25</td>
<td>Quiz 1 Jan. 25</td>
<td>Concepts of motion</td>
</tr>
<tr>
<td>3</td>
<td>Jan. 30, Feb. 1</td>
<td>Quiz 2 Feb. 1</td>
<td>Kinematics in 1-D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project 1 due Feb. 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Feb. 6, 8</td>
<td>Quiz 3 Feb. 8</td>
<td>Vectors and coordinate systems</td>
</tr>
<tr>
<td>5</td>
<td>Feb. 13, 15</td>
<td>Quiz 4 Feb. 15</td>
<td>Kinematics in 2-D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project 2 due Feb. 17</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Feb. 20, 22</td>
<td>Quiz 5 Feb. 22</td>
<td>Force and motion</td>
</tr>
<tr>
<td>Date</td>
<td>Event Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb. 27, March 1</td>
<td>Exam 1 on February 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 6, 8</td>
<td>Quiz 6 March 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project 3 due March 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dynamics – motion along a line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 10-12</td>
<td>Quiz 7 March 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Newton’s third law</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 20, 22</td>
<td>Spring Break March 13th – 17th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 27, 29</td>
<td>Quiz 8 March 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project 4 March 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dynamics – motion in a plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 29</td>
<td>Quiz 9 March 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Work and kinetic energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 3, 5</td>
<td>Quiz 10 April 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interactions and potential energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 10, 12</td>
<td>Exam 2 on April 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project 5 due April 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impulse and momentum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 17, 19</td>
<td>Quiz 11 April 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oscillations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 24, 26</td>
<td>Quiz 13 April 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotation of a rigid body</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 1, 3</td>
<td>Quiz 14 May 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Newton’s theory of gravity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exam 3 on May 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project 7 due May 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final exam on Monday May 8th 1:00 pm – 3:45 pm