Syllabus
General Chemistry 1305
Dr. Saupe - Spring 2021

Stipulations in this syllabus are subject to modification and correction during the semester. All modifications (if any) will be discussed in class and posted on the course Blackboard site.

Instructor:

Dr. Geoffrey Saupe
Course: CRN 28122
Location: ONLINE
Time: MWF 12:30 PM - 1:20 PM
Office Location: CCSB 2.0116
Phone: 747 - 7559
Email: gsaupe@utep.edu
Teaching Assistant: Nivy Nanda - nnanda@miners.utep.edu
Teaching Assistant Office Hours: TBA

Course Information:

This CHEM 1305 course has two components (for one grade) that all students must register for (1) CHEM 1305 Lecture and (2) CHEM 1305 Workshop. There are no exceptions to this. You must be enrolled in both. Every workshop section is two hours in duration and meets one day per week. A different course, Laboratory CHEM 1105, is a separate course that is a co-requisite. Most majors require CHEM 1105. Laboratory CHEM 1105 is three hours in duration. 1305 Workshop and 1105 Laboratory are different courses with different Course Registration Numbers (CRNs). The Honors option is not offered in this course.

Required Course Materials:

A. This course uses a required guide book for use in your Workshop activities. It is currently only available through the UTEP bookstore. It is called First Semester General Chemistry by Exploration, Spring 2021. As explained in the class email, there are no used copies. and you cannot use older editions. Photocopies are prohibited by copyright law.

B. For lecture the required textbook is Chemistry, by Raymond Chang and Jason Overby, 13th edition (see options, read the fine print). The publisher is McGraw Hill.
C. For lecture the **required online homework** system is called CONNECT 13th edition. It is also published by McGraw Hill, and it matches the 13th edition textbook. When you purchase CONNECT, you are buying an **access code**, which you use when you log into the CONNECT website. **The CONNECT access code must be for the 13th edition version.**

When you enter the specific Connect website for this course, you will be asked to enter your CONNECT code. If you have purchased one, then enter that one, otherwise follow the instructions on how to purchase. You can use the CONNECT homework for free for a short time (2 weeks), then your purchased code will be required.

D. Check the vendor's fine print carefully. There may be several options that bundle the paper book, e-book and CONNECT in different ways. CONNECT comes with an e-book included, but hey also give you an option to get a paper copy in addition. Sometimes buying the hard cover 13th ed. book gives you and e-book included. If you wish to have a **hard copy** textbook but don't want the newest edition, you can always purchase a separate used hard copy of the textbook. They are cheap. **Any edition of the Chang book will be acceptable, but I recommend the 10th edition or later.**

Topics Covered - See Appended Contents from the Textbook. **We will cover the first ten chapters of our textbook. Some topic will be omitted due to time constraints.**

Workshop:

Workshop is a required component of the CHEM 1305 course. Every student enrolled in a CHEM 1305 Lecture section **must also be co-enrolled in a CHEM 1305 Workshop section. All workshops meet during the 1st week of school** (and for the rest of the semester). **Attendance is required.** Each of the Workshops meets for a two-hour period and is instructed by a Peer Leader. **The Workshop format enables the Peer Leaders to use active learning techniques to enhance understanding of the chemical principles discussed in class. It also provides opportunities for hands-on exposure to qualitative and descriptive chemistry activities (Explorations) to enhance learning.**

Workshop Office Hours: The Team of Workshop Peer Leaders (PL) have several office hours every day of the school week. The actual hour and location of the office hours will be announced in the workshop and posted on Blackboard. Though each PL has their own specific office hours each week, **you may consult with any Peer Leader during her or his office hours.**

Prerequisites:

In order to be enrolled in Chemistry 1305, you should have:

- Passed or be concurrently enrolled in Math 1508 *or*
- Have achieved an SAT Math score of 600 or better.
Student Major:
The CHEM 1305 - 1306 sequence is designed for students who are majoring in a field of science or engineering. Students majoring in other disciplines may prefer (but are not required) to take the CHEM 1407 - 1408 sequence, which contains more descriptive and less quantitative material.

Resources:
- **Blackboard**: Announcements, help files, and grade results will be made available using Blackboard. You are strongly advised to use the resources posted on Blackboard. Check often for content updates. To access Blackboard:
 - Go to your myUTEP web page. You will need your email username and password. If you don’t know your email username and password, call the HELP desk to request them.
 - Go to My.UTEP.edu and log in.
 - Click on Blackboard.

- **Secretarial Services**: The main office of Chemistry Department is located in the Chemistry and Computer Science Building CCSB 2.0704. Staffing times will vary under the COVID-19 restrictions. The phone number is 915-747-5701.

Learning Goals:
This is the first part of General Chemistry for scientists, engineers and pre-medical students. Students in the class will gain fundamental knowledge in atomic and molecular structure, nomenclature, physical and chemical changes of matter, chemical reactivity, chemical bonding, thermochemistry and the properties of gases. Specifically, students will be able to:
- Describe, explain and model chemical and physical processes at the molecular level in order to explain macroscopic properties.
- Classify matter by its state and bonding behavior using the Periodic Table as a reference.
- Solve quantitative chemistry problems and demonstrate reasoning clearly and completely.
- Integrate multiple ideas in the problem solving process.
- Learn how to work successfully in teams to solve challenging chemical problems.
- Learn how to argue persuasively but respectfully about chemical concepts.
- Practice oral reporting out to their entire Workshop, thus gaining confidence in public speaking.

Instructor Expectations:
- Students shall attend all lectures and workshops.
- Students shall complete all homework assignments. It is the students’ responsibility to finish assigned lecture Homework and Assignments by due dates; it is the student’s additional responsibility to finish, and turn in to their Peer Leaders, assigned Workshop Workbook homework by due dates.
• Students will read the chapters covered before class and consult with the professors or Peer Leaders for any questions.

Course Withdrawal Policy

Classes dropped prior to the official census date will be deleted from the student’s semester record. After this date, but only before the official course drop deadline the College of Science permits any student to drop with an automatic “W”. After the official course drop deadline, students who withdraw must receive grades of “F”.

The UTEP Spring 2020 course drop deadline is posted on the UTEP website. The College of Science will remain aligned with the University policy and NOT approve any drop requests after that date.

All grades of Incomplete (semester grade) must be accompanied by an Incomplete Contract that has been signed by the instructor of record, student, departmental chair, and the Dean. The College of Science requires Incomplete Contracts be limited to one month. A grade of Incomplete is only used in extraordinary circumstances. If the student has missed a significant amount of work (e.g. multiple assignments or tasks), a grade of Incomplete is not appropriate or warranted.

Laboratories:

CHEM 1105 Laboratory is a separate course with a different instructor. CHEM 1105 is not Workshop and Workshop is not CHEM 1105. Workshop is an integral part of CHEM 1305. The content for CHEM 1105 laboratory is also designed to enhance the materials covered in lectures for CHEM 1305.

Examinations:

CHEM 1305 examination questions are designed to test the understanding of basic concepts and familiarity with chemical nomenclature and usage. Many examination problems involve calculations; this is the reason for the mathematics prerequisite. Students are strongly encouraged to learn the process involved in problem solving rather than to memorize specific facts. Four regular examinations and one Final Exam are scheduled. The final exam scheduled time is dictated by the University and is posted on the UTEP College of Science website. The dates for the four regular exams will be posted on Blackbaord.

No makeup of examinations will be provided. When valid absences are expected, and qualified arrangements are made at least 7 days prior to an exam, the instructor may approve taking an exam early. Valid absences are only for proven University related activities (e.g. out-of-town research presentations, sporting events, and others pre-arranged with the professor) and must be arranged with the professor at least 7 days prior to the date of the respective examination.

Because this course is now 100% online, the examination process is new. For some exams, there may be alternate exam times, which will allow students with conflicts to adjust their schedules. This process will be discussed in greater detail in class and via email.
For every examination:

- NO CELL PHONES, tablets, secondary computers, OR OTHER ELECTRONIC DEVICES MAY BE USED DURING EXAMINATIONS.
- Exams are closed book. No access to notes or photos is allowed during the exams.

Academic Honesty:

Materials (written or otherwise) submitted to fulfill academic requirements must represent a student’s own efforts. Any act of academic dishonesty attempted by a UTEP student is unacceptable and will not be tolerated. Academic dishonesty is prohibited and is considered a violation of the UTEP Handbook of Operating Procedures. It includes, but is not limited to, cheating, plagiarism, and collusion. Violations will be taken seriously and must be referred to the Dean of Students Office for disciplinary action. Studying together and discussing homework problems etc is encouraged, but you still must do your own work.

Students with Disabilities:

Students with a documented disability can contact the Center for Accommodations and Student Services (CASS) to take exams with appropriate accommodations. *Any pre-arrangements must be made known in the first two weeks of class* and the appropriate CASS generated documentation presented to the instructor. The CASS office is located in Room 106 Union East Building and can be contacted at (915) 747-5148 Voice, (915) 747-8712 Fax or via email at cass@utep.edu.

Grade Evaluation: (Evaluation is subject to revision.)

Letter grades for the CHEM 1305 course are assigned on the basis of your performance in the course and are determined by your total score earned during the semester. The final course grade is based on the following calculation:

A) **Final** examination (comprehensive) score (25%)

B) **Workshop** (20%)

C) **CONNECT online lecture Homework** (10%)

D) **Regular Examinations** (45%).

Four Regular Examinations will be given. The exact cut-off scores for your letter grade in 1305 will be determined at the end of the semester, but often follows a traditional pattern or better, something like 70%, 80%, and 90% for grades of C, B, and A, respectively.

Course Topics Covered is Appended (next page). Also see files on Blackboard.
Contents in Brief

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chemistry: The Study of Change</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Atoms, Molecules, and Ions</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>Mass Relationships in Chemical Reactions</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>Reactions in Aqueous Solutions</td>
<td>118</td>
</tr>
<tr>
<td>5</td>
<td>Gases</td>
<td>172</td>
</tr>
<tr>
<td>6</td>
<td>Thermochemistry</td>
<td>230</td>
</tr>
<tr>
<td>7</td>
<td>Quantum Theory and the Electronic Structure of Atoms</td>
<td>274</td>
</tr>
<tr>
<td>8</td>
<td>Periodic Relationships Among the Elements</td>
<td>326</td>
</tr>
<tr>
<td>9</td>
<td>Chemical Bonding I: Basic Concepts</td>
<td>368</td>
</tr>
<tr>
<td>10</td>
<td>Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals</td>
<td>412</td>
</tr>
<tr>
<td>11</td>
<td>Intermolecular Forces and Liquids and Solids</td>
<td>465</td>
</tr>
<tr>
<td>12</td>
<td>Physical Properties of Solutions</td>
<td>518</td>
</tr>
<tr>
<td>13</td>
<td>Chemical Kinetics</td>
<td>562</td>
</tr>
<tr>
<td>14</td>
<td>Chemical Equilibrium</td>
<td>621</td>
</tr>
<tr>
<td>15</td>
<td>Acids and Bases</td>
<td>666</td>
</tr>
<tr>
<td>16</td>
<td>Acid-Base Equilibria and Solubility Equilibria</td>
<td>720</td>
</tr>
<tr>
<td>17</td>
<td>Entropy, Free Energy, and Equilibrium</td>
<td>776</td>
</tr>
<tr>
<td>18</td>
<td>Electrochemistry</td>
<td>812</td>
</tr>
<tr>
<td>19</td>
<td>Nuclear Chemistry</td>
<td>862</td>
</tr>
<tr>
<td>20</td>
<td>Chemistry in the Atmosphere</td>
<td>900</td>
</tr>
<tr>
<td>21</td>
<td>Metallurgy and the Chemistry of Metals</td>
<td>930</td>
</tr>
<tr>
<td>22</td>
<td>Nonmetallic Elements and Their Compounds</td>
<td>956</td>
</tr>
<tr>
<td>23</td>
<td>Transition Metals Chemistry and Coordination Compounds</td>
<td>994</td>
</tr>
<tr>
<td>24</td>
<td>Organic Chemistry</td>
<td>1025</td>
</tr>
<tr>
<td>25</td>
<td>Synthetic and Natural Organic Polymers</td>
<td>1058</td>
</tr>
</tbody>
</table>

Appendix 1 Derivation of the Names of Elements A-1
Appendix 2 Units for the Gas Constant A-7
Appendix 3 Thermodynamic Data at 1 atm and 25°C A-8
Appendix 4 Mathematical Operations A-13
Contents

List of Applications xix
List of Animations xx
Preface xxi
Setting the Stage for Learning xxix
A Note to the Student xxxii

CHAPTER 1
Chemistry: The Study of Change 1

1.1 Chemistry: A Science for the Twenty-First Century 2
1.2 The Study of Chemistry 2
1.3 The Scientific Method 4
CHEMISTRY in Action
The Search for the Higgs Boson 6
1.4 Classifications of Matter 6
1.5 The Three States of Matter 9
1.6 Physical and Chemical Properties of Matter 10
1.7 Measurement 11
CHEMISTRY in Action
The Importance of Units 17
1.8 Handling Numbers 18
1.9 Dimensional Analysis in Solving Problems 23
1.10 Real-World Problem Solving: Information, Assumptions, and Simplifications 27
Key Equations 28
Summary of Facts & Concepts 29
Key Words 29
Questions & Problems 29
CHEMICAL MYSTERY
The Disappearance of the Dinosaurs 36
CHAPTER 2
Atoms, Molecules, and Ions 38

2.1 The Atomic Theory 39
2.2 The Structure of the Atom 40
2.3 Atomic Number, Mass Number, and Isotopes 46
2.4 The Periodic Table 48

CHEMISTRY in Action
Distribution of Elements on Earth and in Living Systems 49

2.5 Molecules and Ions 50
2.6 Chemical Formulas 52
2.7 Naming Compounds 56
2.8 Introduction to Organic Compounds 65

Key Equation 67
Summary of Facts & Concepts 67
Key Words 67
Questions & Problems 68

CHAPTER 3
Mass Relationships in Chemical Reactions 75

3.1 Atomic Mass 76
3.2 Avogadro’s Number and the Molar Mass of an Element 77
3.3 Molecular Mass 81
3.4 The Mass Spectrometer 83
3.5 Percent Composition of Compounds 85
3.6 Experimental Determination of Empirical Formulas 88
3.7 Chemical Reactions and Chemical Equations 90
3.8 Amounts of Reactants and Products 95
3.9 Limiting Reagents 99
3.10 Reaction Yield 103

CHEMISTRY in Action
Chemical Fertilizers 105

Key Equations 106
Summary of Facts & Concepts 106
Key Words 106
Questions & Problems 106
CHAPTER 4

Reactions in Aqueous Solutions 118

4.1 General Properties of Aqueous Solutions 119
4.2 Precipitation Reactions 121

CHEMISTRY in Action
An Undesirable Precipitation Reaction 126

4.3 Acid-Base Reactions 126
4.4 Oxidation-Reduction Reactions 132

CHEMISTRY in Action
Breathalyzer 144

4.5 Concentration of Solutions 145
4.6 Gravimetric Analysis 149
4.7 Acid-Base Titrations 151
4.8 Redox Titrations 155

CHEMISTRY in Action
Metal from the Sea 156

Key Equations 157
Summary of Facts & Concepts 158
Key Words 158
Questions & Problems 158

CHEMICAL MYSTERY
Who Killed Napoleon? 170

CHAPTER 5

Gases 172

5.1 Substances That Exist as Gases 173
5.2 Pressure of a Gas 174
5.3 The Gas Laws 178
5.4 The Ideal Gas Equation 184
5.5 Gas Stoichiometry 193
5.6 Dalton’s Law of Partial Pressures 195

CHEMISTRY in Action
Scuba Diving and the Gas Laws 200

5.7 The Kinetic Molecular Theory of Gases 202

CHEMISTRY in Action
Super Cold Atoms 208

5.8 Deviation from Ideal Behavior 210

Key Equations 213
Summary of Facts & Concepts 214
Key Words 214
Questions & Problems 215

CHEMICAL MYSTERY
Out of Oxygen 228
CHAPTER 6

Thermochemistry 230

6.1 The Nature of Energy and Types of Energy 231
6.2 Energy Changes in Chemical Reactions 232
6.3 Introduction to Thermodynamics 234
 CHEMISTRY in Action
 Making Snow and Inflating a Bicycle Tire 240
6.4 Enthalpy of Chemical Reactions 240
6.5 Calorimetry 246
 CHEMISTRY in Action
 White Fat Cells, Brown Fat Cells, and a Potential Cure for Obesity 250
6.6 Standard Enthalpy of Formation and Reaction 253
 CHEMISTRY in Action
 How a Bombardier Beetle Defends Itself 256
6.7 Heat of Solution and Dilution 258

 Key Equations 261
 Summary of Facts & Concepts 261
 Key Words 262
 Questions & Problems 262

 CHEMICAL MYSTERY
 The Exploding Tire 272

CHAPTER 7

Quantum Theory and the Electronic Structure of Atoms 274

7.1 From Classical Physics to Quantum Theory 275
7.2 The Photoelectric Effect 279
7.3 Bohr’s Theory of the Hydrogen Atom 282
7.4 The Dual Nature of the Electron 287
 CHEMISTRY in Action
 Laser—The Splendid Light 288
7.5 Quantum Mechanics 291
 CHEMISTRY in Action
 Electron Microscopy 292
7.6 Quantum Numbers 295
7.7 Atomic Orbitals 297
7.8 Electron Configuration 301
7.9 The Building-Up Principle 308

CHEMISTRY in Action
Quantum Dots 312

Key Equations 313
Summary of Facts & Concepts 314
Key Words 315
Questions & Problems 315

CHEMICAL MYSTERY
Discovery of Helium and the Rise and Fall of Coronium 324

CHAPTER 8
Periodic Relationships Among the Elements 326

8.1 Development of the Periodic Table 327
8.2 Periodic Classification of the Elements 329
8.3 Periodic Variation in Physical Properties 333
8.4 Ionization Energy 340

CHEMISTRY in Action
The Third Liquid Element? 341

8.5 Electron Affinity 345
8.6 Variation in Chemical Properties of the Representative Elements 347

CHEMISTRY in Action
Discovery of the Noble Gases 358

Key Equation 359
Summary of Facts & Concepts 359
Key Words 360
Questions & Problems 360

CHAPTER 9
Chemical Bonding I: Basic Concepts 368

9.1 Lewis Dot Symbols 369
9.2 The Ionic Bond 370
9.3 Lattice Energy of Ionic Compounds 372

CHEMISTRY in Action
Sodium Chloride—A Common and Important Ionic Compound 376

9.4 The Covalent Bond 377
9.5 Electronegativity 380
9.6 Writing Lewis Structures 384
9.7 Formal Charge and Lewis Structure 387
CHAPTER 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals 412

10.1 Molecular Geometry 413
10.2 Dipole Moments 423

CHEMISTRY in Action
Microwave Ovens—Dipole Moments at Work 426

10.3 Valence Bond Theory 429
10.4 Hybridization of Atomic Orbitals 431
10.5 Hybridization in Molecules Containing Double and Triple Bonds 440
10.6 Molecular Orbital Theory 443
10.7 Molecular Orbital Configurations 446
10.8 Delocalized Molecular Orbitals 452

CHEMISTRY in Action
Buckyball, Anyone? 454

Key Equations 456
Summary of Facts & Concepts 456
Key Words 456
Questions & Problems 457

CHAPTER 11

Intermolecular Forces and Liquids and Solids 465

11.1 The Kinetic Molecular Theory of Liquids and Solids 466
11.2 Intermolecular Forces 467
11.3 Properties of Liquids 473

CHEMISTRY in Action
A Very Slow Pitch 475

11.4 Crystal Structure 477

CHEMISTRY in Action
Why Do Lakes Freeze from the Top Down? 478

11.5 X-Ray Diffraction by Crystals 483