This course is another critical part of the foundation of your future physics understanding. An understanding of electricity and magnetism, not only provides you with great insight into real life experiences (static electricity, car electrical systems, home electricity, electronic devices, magnets, etc.), but it provides you with a tremendously important theoretical construct: the field. The basic understanding of electric and magnetic fields that you will develop in this class, will be the physical foundation for a much deeper understanding of fields that you will obtain when you take higher level mathematics (MATH 3335) and learn concepts such as gradient, divergence and curl. With these mathematical tools you will revisit electricity & magnetism in PHYS 4341. Note also, the field concept (and related mathematics) applies to gravitational fields as well. If you work hard in this course, it will be time well spent!

Instructor: Dr. Eric Hagedorn; ehagedorn@utep.edu Office: PSCI 221B Phone: 7540
Office Hours: MWTh 3:00- 4:30 pm.

Structure: Three 50-minute lectures weekly (PSCI 314, MWF, 12:30-1:20) CRN 16769
1 LAB per week (PSCI 319, T 5:30-7:20) CRN 16775
1 recitation/discussion per week (PSCI 314, W 2:00-3:20) CRN 16778

Textbook: University Physics, Young & Friedman, 12th Edition, Chapters 21-29, with selections from Chapters 30, 31 & 32.

Laboratory: To be provided

Homework: Web Assign – for minimal fee.

Quizzes: Quizzes will be given during recitation.

Exams: Closed book. Will include both conceptual and problem solving type questions

Grading: 15% Final Exam (cumulative with emphasis on most recent):
30% Exams: Four exams during the semester, lowest one dropped (10 % each).
15% Quizzes (lowest grade dropped)
20% Lab
20% Homework: to be submitted through Webassign or on paper when asked

Learning Goals
This semester you will be learning about the AMAZING world of electricity and magnetism and it all revolves around the physical property known as “charge.” A simple way to think about EVERYTHING you will learn in this course is that you will learn about 1) stationary charges, 2) flowing charges (moving together with more or less constant velocity), and 3) accelerating charges.

First: Stationary Charges. Charges exert forces upon one another (allowing you to use PHYS 2420). The ability of a lone, stationary charge to exert a force if another charge were placed near
it, is the basis for the concept of the “electric field”. Thinking about charges doing work upon one another is the basis for the concept of “electric potential,” known less accurately as “voltage.” **Second: Flowing Charges.** When voltages cause electrons to move in conductors, one can design “electrical circuits.” The basic understanding of circuits you will develop in PHYS 2421 will lead to critical practical knowledge of real-life circuits in your car, your home, and your stereo. It turns out that electrical currents give rise to “magnetic fields,” identical to those caused by permanent magnets made out of iron! This leads to a practical understanding of electromagnets, such as those that ring a door bell, operate the solenoid in your car that pulls the starter against the fly wheel, or operates the solenoid valves in a dish washer or washing machine.

**Third: Accelerating Charges.** When you accelerate charges you create time-varying electric and magnetic fields that move through space (even empty space!). This moving, time-varying, electric and magnetic field is more commonly known as an “electromagnetic wave.” While we will not have much time to dig into electromagnetic waves, note that this concept explains radio waves, microwaves, infrared radiation, visible light, ultraviolet light, x-rays, and gamma rays!

**Missed Exam**
Make up exams will only be considered if you have a signed letter from your medical doctor or other appropriate authority. These letters must be verifiable. Contact information must be provided and when the appropriate individual is contacted, they will need to be able to corroborate the absence. If the letter cannot be verified, the case will be turned over to the Dean of Students as being suspected of Academic Dishonesty.

**Students with Disabilities**
If you have a disability (physical or psychological) and require reasonable accommodations to enable you to participate in this course (such as note takers, readers, or extended time on exams and assignments) please contact your lecture instructor as soon as possible and provide the appropriate documentation from Disabled Student Services (747-5148 or dss@utep.edu). Without this documentation, no accommodations will be made. Please take care of this before the first exam.

**UTEP Policies on Academic Dishonesty**
If an instructor suspects a student of cheating, he/she is to collect evidence that he/she believes indicates this (e.g. exams, student work, etc). This evidence is then turned over to the Assistant Dean of Students (ADS). The student will receive an incomplete on whatever piece of work is under consideration. No other actions will be taken by the instructor until the case is closed: no discussion, no accusation, and no different treatment. The student is encouraged to continue participating in the class. The ADS will consider the evidence provided her and then contact the accused student (and possibly peers) and investigate the allegations. The ADS will then make a decision as to whether cheating occurred and determine what the consequences will be. The instructor will be consulted by the ADS as to whether the results of the investigation are acceptable to him/her. If acceptable, the instructor will simply carry out the consequences sent to both the student in question and the instructor in a formal letter from the Dean of Students. While the seriousness of the identified dishonest actions determines the nature of the consequences, possible consequences include: a counted “zero” on the piece of work, a letter grade reduction, or being placed on academic probation. Students have the right to appeal a decision and participate in a formal public hearing.