University of Texas at El Paso
Electrical and Computer Engineering Department
EE 2151: Laboratory for EE 2351 Electric Circuits II
SPRING 2018

Instructor: Eric Galvan
Office Location: E325
Email: egalvan4@miners.utep.edu
Office Hours: 10:00 am – 12:00 pm, Friday.
Lab Day/Time:
Monday 7:30 am – 10:20 am
Tuesday 10:30 am – 1:20 pm
Thursday 10:30 am – 1:20 pm
Laboratory Room: E333
Prerequisites: EE 1105 or EE 1110 with a grade of "C" or better.
Laboratory Description: Use of oscilloscopes, function generators, and power supplies to test
and study electrical networks and their behavior. Technical writing and computer aided circuit
analysis and design.

Laboratory Requirements:

- **Composition Notebook (Lab Log):**
 - Name on front cover
 - Table of contents on the first page
 - Number all pages. Write numbers on the bottom right hand side of the page.
 - All labs must be in this order: Prelab -> Lab Assignment/Data Collection ->
 Conclusion/Lab Report (Report and answer questions if any)

- **Prelab:**
 - Have it ready to turn in at the beginning of lab hours.
 - All prelabs must be turned in individually.
 - All prelabs must be done on your lab logs.

- **Work:**
 - Can be done in groups of two but everyone must have their own individual log and
 work done.
 - Each student or group must present a working demonstration of the lab
 assignment to the instructor before the end of the lab session in order to earn full
 credit.

- **Lab Data:**
 - Please attach all of your lab data onto your logs.
 - Lab data may be print outs of your simulations or pictures of your data (i.e.
 Circuit Boards, Measurements, etc.).

- **Reports:**
 - Must be done on your logs.
 - Please write legibly or type out your conclusion.
Answer all questions (if any).
At least 1 paragraph discussing expected/calculated data vs. experimental data.
Compare measurements and explain how you arrived at those results.
Write any interesting details about any problems you might have encountered during your lab.

- Lab notebooks must be submitted by the end of each lab session.
- Make sure that your assignment is checked and stamped by the teaching assistant during the lab session.
- Samples of student work will be collected for quality assurance purposes. Please notify the professor, in writing, if there is any confidentiality requirement.

Food and Drink Policy

There is a No Food and Drink policy in the lab. Students who bring food and/or drinks into the lab will be asked to leave.

Evaluation and Grading

- Grading will be based upon a weighted average of quizzes and lab work (lab exercises and reports).
- Unannounced quizzes may be given at the beginning or during any class. No make up will be given for missed quizzes.
- Make up of missed labs will only be allowed for students with medical reason that prevents their attendance (written notification from doctor required), military duties (notification to be provided in advance), and for other compassionate reasons. Business related activities, car problems, and over sleeping are not considered compassionate reasons.
- Each lab exercise will be evaluated in the following manner: **Prelab 20%, lab work 50%, and report 30%**.
- Late reports will be penalized at a rate of 10% per day, up to a maximum of 3 days. Reports that are more than 3 days late will receive a grade of 0.

<table>
<thead>
<tr>
<th>Evaluation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab work and reports</td>
<td>80% of final mark</td>
</tr>
<tr>
<td>Quizzes</td>
<td>20% of final mark</td>
</tr>
</tbody>
</table>

Letter grades will be assigned according to the following scale:

<table>
<thead>
<tr>
<th>Grading</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100-90%</td>
</tr>
<tr>
<td>B</td>
<td>89-80%</td>
</tr>
<tr>
<td>C</td>
<td>79-70%</td>
</tr>
<tr>
<td>D</td>
<td>69-60%</td>
</tr>
<tr>
<td>F</td>
<td>59-0%</td>
</tr>
</tbody>
</table>
Attendance

Class attendance is mandatory and will be monitored. It is the student’s responsibility to sign the attendance sheet provided by the instructor for each class. Absence in more than 2 classes for any reasons will result in being dropped from the class with F. Drops with W only with proper justification.

Cell Phone and Laptop Policy

Cell phones are not permitted during the lecture. Laptops may be used during assignments as specified by instructor. Students are required to turn off cell phones before entering the classroom. Cell phones should be placed out of sight (like in a purse or backpack). Students using cell phones during class will be asked to leave and will have their grade affected.

Proposed Outline for EE 2151: Lab for EE 2351 Electric Circuits II

1. **LAB EXERCISE 1: Introduction of Simulation Software Using Multisim.**
 1.1 Students will perform node voltage and mesh current analysis on a Wheatstone Bridge Circuit.
 1.2 Students will simulate the Wheatstone Bridge circuit on Multisim.
2. **LAB EXERCISE 2: Introduction to Basic Circuits on Breadboard**
 2.1 Students will build the Wheatstone Bridge circuit from their prelab on the breadboard.
 2.2 Students will measure voltage, current, and power using the multimeters from lab.
3. **LAB EXERCISE 3: Introduction to Oscilloscopes and Function Generators**
 3.1 Students will receive training on the use of basic electronic test equipment such as oscilloscopes and function generators.
 3.2 Students will use the Function Generator to generate waveforms with specific shapes and voltages.
 3.3 Students will measure and verify the signal parameters using the Oscilloscope.
4. **LAB EXERCISE 4: Analysis of Op-Amps.**
 4.1 Students will use Oscilloscope and Function Generator to analyze basic Op-Amp function.
 4.2 Students will determine the gain, cut-off frequency, and saturation of the selected Op-Amps.
5. **LAB EXERCISE 5: Sinusoidal Steady State Analysis**
 5.1 Students will analyze, simulate, and construct two separate RLC circuits with a sinusoidal source.
6. **LAB EXERCISE 6: Steady State Power Analysis**
 6.1 Students will analyze, simulate, and build an RL circuit with average and complex power.
7. **LAB EXERCISE 7: Natural Response of RC and RL Circuits**
 7.1 Students will analyze, simulate, and build RC/RL circuits to gain a full understanding of their nature.
 7.2 Students will learn about the time constant \(\tau \) and the transient response of capacitors and inductors.
8. **LAB EXERCISE 8: Transient Response of Second Order RLC Circuits**
 8.1 Students will analyze, simulate, and build RLC circuits to gain a full understanding of their nature.
 8.2 Students will explore the 3 types of responses by building the circuits.
 8.3 Students will identify the parameters that determine the type of response.

9. **LAB EXERCISE 9: Frequency Response and Filters**
 9.1 Students will experimentally investigate the magnitude and phase frequency response of several circuits, and applications of these circuits.

10. **LAB EXERCISE 10: Filters and Transfer Functions**
 10.1 Students will design and implement a 3-way audio crossover.

11. **LAB EXERCISE 11: Make Up Lab**
 11.1 Students have the opportunity to make up one missed lab and can complete an unfinished lab.

EE 2151 Lab for EE 2351 – Electric Circuits II - Timetable – Spring 2018

<table>
<thead>
<tr>
<th>Day, Date</th>
<th>Lab Topic(s)</th>
<th>Lab Assignment</th>
</tr>
</thead>
</table>
| Week – 2 | 1. Introduction of Simulation Software Using Multisim. | - Perform node voltage and mesh current analysis on a Wheatstone Bridge Circuit.
- Simulate the Wheatstone Bridge circuit using Multisim. |
| Week – 3 | 2. Introduction to Basic Circuits on Breadboard | - Build the Wheatstone Bridge circuit from lab 1 on the breadboard.
- Measure voltage, current, and power using the multimeters. |
| Week – 4 | 3. Introduction to Oscilloscopes and Function Generators | - Training on the use of basic electronic test equipment such as oscilloscopes and function generators. |
- Determine the gain and saturation of the selected Op-Amps. |
| Week – 6 | 5. Sinusoidal Steady State Analysis | Analyze, simulate, and construct two separate RLC circuits with a sinusoidal source. |
| Week – 7 | 6. Steady State Power Analysis | - Analyze, simulate, and build an RL circuit with average and complex power. |
| Week – 8 | 7. Natural Response of RC and RL Circuits | - Analyze, simulate, and build RC/RL circuits to gain a full understanding of their nature. |
| Week – 9 | 8. Transient Response of Second Order RLC Circuits | - Analyze, simulate, and build RLC circuits to gain a full understanding of their nature. |
| Week – 10 | 9. Frequency Response and Filters | - Experimentally investigate the magnitude and phase frequency response of several circuits, and applications of these circuits. |
| Week – 11 | 10. Filters and Transfer Functions | - Design and implement a 3-way audio crossover. |
Week – 12

Week – 13 **11. Make Up Lab** - Opportunity to make up any unfinished lab.

INSTITUTIONAL POLICIES

Academic Dishonesty
As an entity of The University of Texas at El Paso, the Department of Electrical and Computer Engineering is committed to the development of its students and to the promotion of personal integrity and self-responsibility. The assumption that a student’s work is a fair representation of the student’s ability to perform forms the basis for departmental and institutional quality. All students within the department are expected to observe appropriate standards of conduct. Acts of scholastic dishonesty such as cheating, plagiarism, collusion, the submission for credit of any work or materials that are attributable in the whole or in part to another person, taking an examination for another person, any act designed to give unfair advantage to a student, or the attempt to commit such acts will not be tolerated. Any case involving academic dishonesty will be referred to the Office of Student Conduct and Conflict Resolution (OSCCR). The Associate Dean of Students will assign a Student Judicial Affairs Coordinator who will investigate the charge and alert the student as to its disposition. Consequences of academic dishonesty may be as severe as dismissal from the University. See the OSCCR homepage at http://sa.utep.edu/osccr/ for more information.

American Disabilities Act
If you have a disability and need classroom accommodations, please contact The Center for Accommodations and Support Services (CASS) at 747-5148, or by email to cass@utep.edu, or visit their office located in UTEP Union East, Room 106. For additional information, please visit the CASS website at http://sa.utep.edu/cass/

Discrimination
Members of the UTEP community are protected from discrimination and harassment by State and Federal Laws. Discrimination on campus on the basis of age, gender, race, ethnicity, national origin, religion, disability, or sexual orientation is strictly prohibited.

Note: This syllabus is subject to minor changes as determined by the instructor
I acknowledge that I have received the syllabus for EE 2151 (Lab for EE 2351 Electric Circuits II) for the Spring 2018 semester and that I understand all its contents, i.e., attendance, evaluation and grading, policies, and other requirements of the course.

<table>
<thead>
<tr>
<th>Student’s printed name</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
</table>