CS 4390
Google Tech Exchange 2024
Software Development Studio

Syllabus

1. Course Information

1.1 Course Description

Software Development Studio integrates various components of students' undergraduate computer science
curriculum, enabling students to work collaboratively on projects using professional tools and processes. This course
bridges the gap between the academic and industry experience of software engineering.

1.2 Prerequisites

o Completion of two Computer Science courses at their university including Data Structures & Algorithms.
e Ability to solve coding problems using lists/arrays, dictionaries/maps, and graphs.
e Proficiency in a high-level programming language such as C, C++, Go, Java, JavaScript, Python, or Rust.

1.3 Class Schedule

A (M/W 5-6:20pm ET) Anna Prokofieva Daniel Mejia* - UTEP Charles Smith-De Ville
B (M/W 3-4:20pm ET) Anna Prokofieva Kianoush Gholamiboroujeni* - FIU Pradeep Koka

C(T/Th 11-12:20pm ET)  Nicholas Kelman Lei Qian* - Fisk Jasmine Rogers

D (T/Th 3-4:20pm ET) Nicholas Kelman Jaycee Holmes - Spelman/Codehouse Imani Herring

1.4 Office Hours Schedule

All students are welcome to all office hours!

Tuesday 5-6 PM ET Nicholas Kelman
Thursday 5-6 PM ET Nicholas Kelman

Wednesday 1-3PMET Anna Prokofieva


mailto:annaprokofieva@techexchange.in
mailto:dmmejia2@techexchange.in
mailto:charlessd@techexchange.in
mailto:annaprokofieva@techexchange.in
mailto:drboroojeni@techexchange.in
mailto:kokapradeep@techexchange.in
mailto:nicholaskelman@techexchange.in
mailto:leiqian.fisk@techexchange.in
mailto:jasminerogers@techexchange.in
mailto:nicholaskelman@techexchange.in
mailto:jaycee@techexchange.in
mailto:iherring@techexchange.in

2. Course Objectives and Learning Outcomes

2.1 Course Objectives

This course aims to teach students:

e Understand the fundamentals of full-stack software development, including frontend, backend, and database
architecture, and apply this knowledge to design and develop web applications.

e Develop effective debugging and troubleshooting skills to identify and resolve software issues, ensuring the
reliability and quality of software applications.

o Apply testing strategies, including unit tests and integration tests, and employ software engineering practices,
such as Agile methodologies, to ensure robust and high-quality software development.

e Gain proficiency in using version control systems, such as Git, to manage code changes and collaborate
efficiently within a team.

e Explore cloud computing platforms/services and generative Al tools, and learn how to deploy, scale, and
manage software applications securely and effectively.

2.2 Learning Outcomes

Level 1

The student has been exposed to the terms and concepts at a basic level and can supply basic definitions. Upon
successful completion of this course, students will be able to:

1. Define full-stack software development and its components, including frontend, backend, and database
architecture.

2. Identify the key elements of software requirements and explain how they are used in the design and
development process.

3. Explain the purpose and functionality of Ul Design in web application development.

4. Recognize and describe the basic ethical considerations and principles relevant to computer science and
software development.

5. Understand software engineering practices, such as Agile methodologies, for effective project management
and collaboration.

Level 2

The student can apply the material in familiar situations, e.g., can work a problem of familiar structure with minor
changes in the details. Upon successful completion of this course, students will be able to:

1. Apply the principles of full-stack software development to design and build web applications, integrating
frontend, backend, and database components.

2. Utilize cloud computing platforms and services to deploy, scale, and manage software applications, ensuring
scalability, availability, and security.

3. Utilize version control systems, leveraging Github Classroom, to manage code changes, including branching
and merge conflicts.

4. Implement testing strategies, including unit tests and integration tests, to ensure software reliability and
quality.

5. Apply software engineering practices, such as Agile methodologies, for effective project management and
collaboration.



Level 3

The student can apply the material in new situations. This is the highest level of mastery. Upon successful completion
of this course, students will be able to:

1. Analyze complex software requirements and design to develop robust and scalable full-stack web applications
prototypes.

2. Collaborate with team members to integrate and manage shared codebases using version control systems,
effectively resolving conflicts, and ensuring code consistency.

3. Integrate various APls, frameworks, and libraries to develop advanced functionalities in software projects.
Communicate software designs effectively, both in written documentation and through verbal explanations,
considering audience comprehension and technical accuracy.

5. Utilize code debugging techniques to identify and resolve issues in software.

3. Course Resources

3.1 Course Components

® Lectures: 1 hour 20 minutes, occurring 2 times per week.
e In-class activities: Group labs, discussion and in-class exercises during lectures.
O Project Coaches will be available to help students work through in-class activities.
e Group Project: The main deliverable of the class, completed with a group of 3.
O Project coaches will be available to assist and coach teams.
e Individual Homework: Practice for important skills taught in class.

O Project coaches will be available to assist and coach individuals.

3.2 Course grade

# of Total

Assignment . % of Grade Notes
Assignments

Each class period students can receive up to 4 points total for attendance.

Attendance + L] 2 points for camera on
e 26 10% pe! _
Participation [ ] 1 point for attending

L] 1 point for participating

17
Unit Assessments . 40%  Each unit's homework is worth 8% of the final grade.
(3-4 per unit)

Final Project 7 50% 7 parts, each worth 3-10% of the final grade.

The nominal percentage-score-to-letter-grade conversion is as follows:
® 90% or higherisan A
® 380-89%isaB
® 70-79%isaC



® 60-69%isaD
® below 60%isanF

The instructor reserves the right to adjust these criteria downward, e.g., so that 88% or higher represents an A, based
on overall class performance. The criteria will not be adjusted upward, however.

3.3 Asking Questions

If students have questions outside of class, there are several venues where they can ask them:
e Course email:
o If students have questions that they don't want to send publicly in the group chat (e.g. a question that
includes a snippet of their code), they can email the course staff at tx24-sds-leads@techexchange.in
e Office hours:

o0 Instructors will host office hours throughout the semester via video chat. You should see invitations to
office hours on your Google Calendar. Feel free to attend office hours for any of the instructors, even
if they aren’t the instructor for your section.

e Individually email your instructors or the Course PgM

o If you have questions specifically for your instructors or the Course PgM - all emails can be found

within Google Classroom
e Discord

O You should’ve been added to our Google Tech Exchange 24 Discord. In the different channels you can
ask general questions, chat with instructors, TAs mentors,mock interviewers and other students

O Channels: #general-techX - general TechX questions

o Channels: #software-development-studio - Course questions, student collaboration, office hour
reminders

e SDS Project Coaches

o If you need additional assistance with your coding assignments you can also reach out to your

assigned SDS Project Coach via email or discord.

3.4 Required Resources

None. Students will access assignments and readings via EdStem. Some useful resources that you may want to consult
are:

e® Cloud Shell: cloud.google.com/shell
o0 Google Vertex API
0 Google Makersuite API

Git: lab.github.com
Python: docs.python.org

Streamlit: blog.streamlit.io

Figma: help.figma.com



mailto:tx23-ads-leads@techexchange.in
https://cloud.google.com/shell
https://cloud.google.com/vertex-ai/docs/reference/rest
https://developers.googleblog.com/2023/03/announcing-palm-api-and-makersuite.html
https://lab.github.com/
https://docs.python.org/
http://blog.streamlit.io/
https://help.figma.com/hc/en-us/sections/4405269443991-Figma-for-Beginners-tutorial-4-parts-

4. Units Covered

1 Introduction + Setting up your environment
2 Project Planning + System Fundamentals
3 Building Application: Cloud Tools
4 Building Application: Frontend Tools
5 Deploying Applications
Final Project | Comprehensive Project of all Tools learned

5. General Policies & Academic Integrity

5.1 Attendance Policy

Students are expected to attend classes regularly, on time, and with cameras on.

® You must attend classes on time and actively participate during group work to get credit. If you have to miss
class, please reach out to the course instructors.

e All students will be required to have cameras on to receive full attendance credit.

e There will be brief quizzes and surveys during some classes. These quizzes will be graded for completion, NOT
for correctness. The quizzes are intended to provide feedback to your instructors.
For each class period, you can receive a total of 4 points:

e 2 points for camera on
e 1 point for attending
e 1 point for participating
If you need an extension or have to miss class, please submit this form.

5.3 Late Work policy

Submission of late work is subject to approval by your Project Coach (your project coach must agree to grade your late
work). Late assignments or late implementation of individual requirements will be penalized 50% (granted points
divided by 2). Each assignment can only be submitted once.

e Example: Student submits late assignment that meets 85/100 points. Grade given is 42.5/100.


https://docs.google.com/forms/d/e/1FAIpQLSd9VkRM4gdKr1n-wFCAKIg7MHCthFkVCOAaHh8TkyOW7NxBlw/viewform

5.4 Extensions

Extensions are only allowed through Tech Exchange (i.e. in emergency situations). If you feel like you will not complete
the assignment on time, talk with your project coach and instructor to get increased support instead of lengthened
deadlines. If you need to request an extension, submit this form.

5.5 Plagiarism policy

Use the table below to determine if you can collaborate on a given assignment.

What kind of help can | get on this assighment?

Type of work Help allowed from
In-class activity Instructors, project coaches, or student enrolled in this class
Final Group Project Instructors, project coaches, or students on the same team.

Individual Homework | Instructors or project coaches. Further collaboration permitted will be
Assignments detailed in homework assignments.

Guidelines for Collaboration

Software engineering is inherently a collaborative process and in this class, we expect students to collaborate with
only their fellow student(s) they are paired with in labs and grouped into for the unit projects.

All work submitted for this assignment must be your own. You may use generative Al tools like ChatGPT or Bard to
help you complete this assignment, but all code from these tools must be clearly marked (explicitly comment the start
line and end line of generative Al code). Failure to mark generative Al code could result in your code getting flagged
for plagiarism. Any instances of plagiarism will be dealt with according to your university's academic integrity policy.

5.6 ADA Policies and Procedures

If a student needs particular accommodations to be made, they must submit this form. Tech Exchange and your
instructor will then work with you to make sure we are meeting the accommodations set by your institution.

6. Using Generative Al to Write Code

6.1 Policy & Guidelines

You are allowed to use Generative Al Tools like Bard and ChatGPT in whatever way you want (or not at all). However,
you must conform to these rules:
1. Mark all code snippets copied from a generative Al tool. This is the only way to ensure that your code is not
flagged for plagiarism. See 6.3 Generative Al Code Example.

2. Fill out the Generative Al TechExchange surveys honestly. We are allowing the use of these tools as part of
Tech Exchange’s research on how students use generative Al when given the option. We want to know how it
is helpful for students, as well as how it is unhelpful.


https://docs.google.com/forms/d/e/1FAIpQLSd9VkRM4gdKr1n-wFCAKIg7MHCthFkVCOAaHh8TkyOW7NxBlw/viewform
https://docs.google.com/forms/d/e/1FAIpQLSd9VkRM4gdKr1n-wFCAKIg7MHCthFkVCOAaHh8TkyOW7NxBlw/viewform

Remember these guidelines when using Bard or ChatGPT.

Do not spend more than 1 hour trying to fine-tune a generative Al prompt. You are a better engineer than
Bard or ChatGPT!
While you are allowed to submit code that is 100% generated, always run your code before submitting to
verify that it works as intended. No matter how small the error, if your code does not run, you will not get
points.

o Additionally, if your code does not meet the assignment requirements, you will not get points.

6.2 Tips for Prompts

Generative Al is most helpful for these uses:

Coming up with a general idea related to a specific interest (e.g. “give me an idea for a streamlit app related to
baseball”)

Creating a template

Generating starter code

Understanding how to code a specific small task (less than 20 lines of python code)

Generating sample data

Generative Al responses are often confidently wrong. You may ask something like “what is a unit test” and you will

receive a long, smart-sounding answer. The answer is probably correct, but it will have missing pieces and might

contain contradictory information. In this case, you will get better results by running a google search and reading a

real article on the topic.

Generative Al is usually NOT helpful in these cases:

Writing tests

Explaining concepts (doing a Google search a clicking on a specific result is better)
Finding a bug in your code

Generating more than ~50 lines of code

6.3 Generative Al Code Examples

Code Snippet Example

Blimport streamlit as st

import backend

data = backend.load_data()

# START OF BARD CODE
# Create a sidebar for selecting the data to display

st.sidebar.header("Select data to display")

selected_measure = st.sidebar.selectbox("Data type", ("Temperature", "Sea level", "Precipitation"))
# END OF BARD CODE

st.line_chart(data, x="Year", y=selected_measure)
st.table(data)



@EStarter Code Example

P# Used Bard to create a hello world starter template.

# Wrote my own function to display data from my backend.
import streamlit as st

import backend

# Title and header
st.title("Hello, world!")
st.header("Welcome to your first Streamlit app!")

def display_table():
data=backend.load_my_data()
st.table(data)

button = st.button("Generate Data")
if button:
display_table()

# Run the app
if __name__ == "__main__":
st.sidebar.title("About")



	1. Course Information
	1.1 Course Description
	1.2 Prerequisites
	1.3 Class Schedule
	1.4 Office Hours Schedule

	2. Course Objectives and Learning Outcomes
	2.1 Course Objectives
	2.2 Learning Outcomes
	Level 1
	Level 2
	Level 3


	3. Course Resources
	3.1 Course Components
	3.2 Course grade
	3.3 Asking Questions
	3.4 Required Resources

	4. Units Covered
	5. General Policies & Academic Integrity
	5.1 Attendance Policy
	5.3 Late Work policy
	5.4 Extensions
	5.5 Plagiarism policy
	What kind of help can I get on this assignment?
	Guidelines for Collaboration

	5.6 ADA Policies and Procedures

	6. Using Generative AI to Write Code
	6.1 Policy & Guidelines
	6.2 Tips for Prompts
	6.3 Generative AI Code Examples
	Code Snippet Example
	Starter Code Example



