 COURSE OUTLINE: MASE 6305: Advanced Materials Processing

Professor
Devesh Misra, Metallurgy M201H, office hours: by appointment.

Schedule
Monday and Wednesday 15:00 – 16:20 PM

Course Objectives
The objective is to introduce methods of synthesis and applications of nanostructured materials and how the structural and functional properties are different from that of the conventional bulk materials. Strong emphasis will be on nanotechnology as it relates to advanced materials processing.

Course Learning Outcomes:
1. Introduce nanotechnology and innovative methods of processing of nanostructured materials involving metals, ceramics and polymers.
2. Describe how the structural and functional properties of nanostructured materials are novel and different from conventional bulk materials.
3. Analyze the underlying reasons for differences in properties of nanostructured materials from that of the conventional bulk materials.
4. Provide an overview of techniques to characterize nanostructured materials.
5. Demonstrate the potential and applications of different additive manufacturing techniques.
6. Introduce awareness of what nanotechnology and additive manufacturing has to offer in meeting new challenges and demands of the millennium that can bring revolution in our day-to-day life.
7. Illustrate future trends in enhancing the properties of engineering materials at the nanoscale level.

Assessment of the Course
The final grade will be determined on the following basis:

(a) Class room participation and preparation 15 points
(b) 2 or 3 Tests/home assignment/exam 45 points
(c) *Attending classes 10 points*
(d) End of the year presentation 30 points

100 points

* 10 points to be awarded if you attend 90% of the total classes (for example, if 40 classes are held, then you should have attended a minimum of 36 classes to secure 10 points). If you DO NOT ATTEND 90 % of the total classes, NO GRADE WILL BE GIVEN. The assigned 10 points include your preparation in the class*.

Presentation: Please select a recently published article (not more than 5 years old) that deals with the processing of nanostructured materials. Make a presentation on all the aspects of the paper including prior art (introduction), objective of study, experimental procedure, results and discussion of results. It is important that you select a good article published in a journal whose impact factor is greater than 1.5.

Attendance and Class Room Policy
- Please make sure that you are NOT late to the class by more than 2 minutes. If you are late by more than 2 minutes, you will be marked absent.
- Please DO NOT leave the class room during the duration of the class. If you need to go, please inform prior to the commencement of the class.
- Please turn off cell phones before entering the class room.

Given that this is an online course, attendance is determined by class participation online. Participation is determined by completion of the following activities:

- Reading/viewing all course materials to ensure understanding of assignment requirements
- Participating in engaging discussion with your peers on the Discussion Boards (grading rubric provided in the “grading information” area of each forum)
- Completing all Module Activities (assignments, quizzes, etc.)
- Completing all Major Assignments

To preserve a student’s GPA, he/she WILL be dropped from the course for failure to turn in two or more major writing assignments.

Late Work Policy

- Major Writing Assignments assignments will be due on Sundays at midnight (11:59 PM). No late work will be accepted.
 - Quiz and Blog/Discussion Assignments
- All quiz, blog, and discussion board assignments will be due on Saturdays at midnight (11:59 PM). No late work will be accepted.

Drop Policy

To drop this class, please contact the Registrar’s Office to initiate the drop process. If you cannot complete this course for whatever reason, please contact me. If you do not, you are at risk of receiving an “F” for the course.

Technology Requirements

Course content is delivered via the Internet through the Blackboard learning management system (LMS). Ensure your UTEP e-mail account is working and that you have access to the Web and a stable web browser. Mozilla Firefox and Google Chrome are the most supported browsers for Blackboard; other browsers may cause complications with the LMS. When having technical difficulties, update your browser, clear your cache, or try switching to another browser.

You will need to have or have access to a computer/laptop, scanner, a webcam, and a microphone. You will need to download or update the following software: Microsoft Office, Adobe, Flashplayer, Windows Media Player, QuickTime, and Java. Check that your computer hardware and software are up-to-date and able to access all parts of the course.

If you encounter technical difficulties beyond your scope of troubleshooting, please contact the Help Desk as they are trained specifically in assisting with technological needs of students.

Netiquette

- Always consider audience. Remember that members of the class and the instructor will be reading any postings.
- Respect and courtesy must be provided to classmates and to instructor at all times. No harassment or inappropriate postings will be tolerated.
- When reacting to someone else’s message, address the ideas, not the person. Post only what anyone would comfortably state in a F2F situation.
- Blackboard is not a public internet venue; all postings to it should be considered private and confidential. Whatever is posted on in these online spaces is intended for classmates and professor only. Please do not copy documents and paste them to a publicly accessible website, blog, or other space. If students wish to do so, they have the ethical obligation to first request the permission of the writer(s).

Academic Honesty Policy and Scholastic Integrity

Academic dishonesty is prohibited and is considered a violation of the UTEP Handbook of Operating Procedures. It includes, but is not limited to, cheating, plagiarism, and collusion. Cheating may involve copying from or providing information to another student, possessing unauthorized materials during a test, or falsifying research data on laboratory reports. Plagiarism occurs when someone intentionally or
knowingly represents the words or ideas of another as one’s own. Collusion involves collaborating with another person to commit any academically dishonest act. Any act of academic dishonesty attempted by a UTEP student is unacceptable and will not be tolerated. All suspected violations of academic integrity at The University of Texas at El Paso must be reported to the Office of Student Conduct and Conflict Resolution (OSCCR) for possible disciplinary action. To learn more HOOP: Student Conduct and Discipline

In summary, the UTEP Policy on academic honesty will be followed. Copying/Plagiarism include the definitions described in the policy. This applies to assignments and exams.

Accommodation Policy
The University is committed to providing reasonable accommodations and auxiliary services to students, staff, faculty, job applicants, applicants for admissions, and other beneficiaries of University programs, services and activities with documented disabilities in order to provide them with equal opportunities to participate in programs, services, and activities in compliance with sections 503 and 504 of the Rehabilitation Act of 1973, as amended, and the Americans with Disabilities Act (ADA) of 1990 and the Americans with Disabilities Act Amendments Act (ADAAA) of 2008. Reasonable accommodations will be made unless it is determined that doing so would cause undue hardship on the University. Students requesting an accommodation based on a disability must register with the UTEP Center for Accommodations and Support Services.

Student Resources
UTEP provides a variety of student services and support:

- **UTEP Library**: Access a wide range of resources including online, full-text access to thousands of journals and eBooks plus reference service and librarian assistance for enrolled students.
- **Help Desk**: Students experiencing technological challenges (email, Blackboard, software, etc.) can submit a ticket to the UTEP Helpdesk for assistance. Contact the Helpdesk via phone, email, chat, website, or in person if on campus.
- **University Writing Center (UWC)**: Submit papers here for assistance with writing style and formatting, ask a tutor for help and explore other writing resources.
- **Math Tutoring Center (MaRCS)**: Ask a tutor for help and explore other available math resources.
- **History Tutoring Center (HTC)**: Receive assistance with writing history papers, get help from a tutor and explore other history resources.
- **Military Student Success Center**: UTEP welcomes military-affiliated students to its degree programs, and the Military Student Success Center and its dedicated staff (many of whom are veterans and students themselves) are here to help personnel in any branch of service to reach their educational goals.
- **RefWorks**: A bibliographic citation tool; check out the RefWorks tutorial and Fact Sheet and Quick-Start Guide.

Students are strongly encouraged to be self-stimulated, take an active role in self-learning, and expected to be intellectually challenged.

Contd. on next page
Table of Contents

Chapter 1 Generic Methods for Nanomaterials and Nanostructured Materials

1.1 Introduction and Classification
 1.1.1 What is Nanotechnology?

Classification of Nanostructures

1.1.2 Nanoscale Architecture

1.2 Effect of the Nanometer Length Scale
 1.2.1 Changes to the System Total Energy
 1.2.2 Changes to the System Structure
 1.2.2.1 Vacancies in nanocrystals
 1.2.2.2 Dislocation in nanocrystals

1.2.3 How Nanoscale Dimensions Affect Properties
 1.2.3.1 Structural properties
 1.2.3.2 Thermal properties
 1.2.3.3 Chemical properties
 1.2.3.4 Mechanical properties
 1.2.3.5 Magnetic properties
 1.2.3.6 Optical properties

1.3 Fabrication Methods
 1.3.1 Top-down Processes
 1.3.1.1 Milling
 1.3.1.2 Lithographic processes
 1.3.1.3 Machining
 1.3.1.4 Bottom-up Processes
 1.3.1.5 Vapor phase deposition methods
 1.3.1.6 Plasma-assisted deposition processes
 1.3.1.7 MBE and MOVPE
 1.3.1.8 Liquid phase methods
 1.3.1.9 Colloidal methods
Chapter 2 Nanostructured Metals and Alloys: Processing and Properties

2.1 Introduction
 2.1.1 Market Drivers

2.2 Producing Bulk Ultrafine-Grained Materials
 by Severe Plastic Deformation
 2.2.1 Techniques for SPD Processing
 2.2.2 Bulk UFG Materials: Main Structural Features and Properties

2.3 Concept of Grain Refinement in Nanostructured Metals

2.4 The Application of Phase Reversion to Fabricate Nanograin
 Stainless Steels

Chapter 3 Nanostructured Materials: Milling of Brittle and Ductile Materials

3.1 Principles of Milling
 3.1.1 Brittle Fracture
 3.1.2 Ultrafine Grinding of Brittle and Hard Materials
 3.1.3 Milling of Single Particles

3.2 Milling Parameters and Powder Characteristics
 3.2.1 Energy Relationship
 3.2.2 Milling Processes
 3.2.3 Mechanisms of Milling
 3.2.4 Dispersion of Oxide Films, Hard Particles, and Wear Debris
 3.2.5 Milling Environment

Chapter 4 The Deformation Physics of Nanocrystalline Metals

4.1 Physical Models for Plastic Deformation

4.2 Ductility in Nanostructured Metals

Chapter 5 Polymer Nanocomposites
5.1 Background: Polymer Nanocomposite Systems
5.2 Polymer Nanocomposites Opportunities
5.3 Processing and Structure of Polymer Nanocomposites
5.4 Nanocomposites of Polymers and Inorganic Particles: Preparation, structure and properties
 5.4.1 Introduction
 5.4.2 Preparation, Processing and Structure of Polymer Nanocomposites
 5.4.3 Properties and Applications of Nanocomposites
 5.4.4 Nanocomposites with Randomly Dispersed Particles
 5.4.5 Nanocomposites with Ordered or Oriented Nanoparticles
 5.4.6 Molecular-scale Control of Interfaces in Organic-Inorganic Hybrid Nanostructured Materials

Chapter 6 Polymer Nanocomposites Processing - Morphology and Crystallization
 6.1 Morphology
 6.2 Molecular Trajectory
 6.3 Melting Behavior
 6.4 Crystallization Kinetics
 6.5 Effects of Microstructural Defects
 6.6 Volumetric or Bulk Crystallization
 6.7 Crystallization in Polymer Nanocomposites
 6.8 Summary

Chapter 7 Magnetic Processing of Nanoceramics – Magnetic Nanoparticles in Biomedicine
 7.1 Introduction
 7.2 Basic Concepts
 7.3 Magnetic Separation
7.3.1 Cell Labeling and Magnetic Separation
7.3.2 Separator Design

7.4 Applications

7.5 Drug Delivery
7.5.1 Motivation and Physical Principles
7.5.2 Magnetic Drug Carriers

7.6 Reverse Micelle: Method for Synthesizing Magnetic Nanoparticles
7.6.1 Reverse Micellar System
7.6.2 Reverse Micelle: Microemulsion Concept

7.7 Recent Advances in Additive Manufacturing and Applications
7.7.1 Electron Beam Melting
7.7.2 Selective Laser Melting