GEOL 5324
Geocomputation Syllabus
Fall 2016
CRN 18139

Lecture: M 9:00-10:50 GEO 320
Lab: W 9:00-10:50 GEO 409

Instructor
Deana Pennington
Department of Geological Sciences
GEO 305C
dpennington@utep.edu
Office Hours: TBD, during lab, or by appointment

General Information
This course focuses on spatial simulation through time, computation and analytics using GIS in conjunction with other analysis and modeling software packages. Students will be introduced to fundamentals of scientific modeling and programming using Blockley, NetLogo, ArcGIS, and Python. In the last few weeks of the class students will be introduced to emerging topics in “big data” relevant to geospatial analysis and modeling.

Prerequisite: An introductory GIS course or equivalent experience.

Course Objectives
• Expand breadth and depth of GIS analysis and modeling concepts and skills
• Develop knowledge of tools, techniques, and methods used in spatial simulation
• Develop knowledge of principles of programming and practical programming skills
• Introduce newly emerging “big data” analysis and modeling approaches
• Foster ability to efficiently solve complex geospatial problems
• Develop experience completing a GIS project

Academic dishonesty
A student’s submission of work for academic credit indicates that the work is the student’s own. Any outside assistance should be acknowledged. While cooperation during class and in lab is encouraged, all assignments must be constructed and written by each individual student.

Makeup policy
Due dates are firm. 10% will be deducted for each day an assignment is late. Assignments will not be accepted more than one week late. Reading assignments must be complete prior to class. Summaries of assigned journal articles are due at the beginning of class. No late summaries of the reading will be accepted since the purpose is for you to be prepared for class.

Labs are due at the beginning of the next lab.

Students with Disabilities
Students with disabilities are referred to the Center for Accommodations and Support Services (CASS; http://sa.utep.edu/cass/) who will work with the instructor to identify appropriate adaptations to better foster a positive teaching and learning experience.
Drop Deadline
The deadline to drop this class is October 28th. No requests for a withdrawal will be approved by the College of Science after that date.

Course Textbooks
Reading will primarily be journal articles made available to you in one of the following ways (depending on logistics and copyright issues):

- on the Internet (e.g., certain open-access journal articles and websites);
- from a UTEP library database (go to the UTEP library home page, and type the exact name of the journal's title into the search window on the left side under E-Journals. This usually results in your being able to access the journal from one or more sources. Be aware that sometimes the listing suggests that fewer years are available than actually are, so always click as far as you can); or
- uploaded to Blackboard.

In addition, some of the labs and homeworks will include readings from Geospatial Analysis (http://www.spatialanalysisonline.com/HTML/index.html), a free, online textbook.

Grading

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class participation</td>
<td>25%</td>
</tr>
<tr>
<td>Homework</td>
<td>25%</td>
</tr>
<tr>
<td>Labs</td>
<td>25%</td>
</tr>
<tr>
<td>Final project presentation</td>
<td>10%</td>
</tr>
<tr>
<td>Final project write up</td>
<td>15%</td>
</tr>
</tbody>
</table>

Class participation
Class will be participatory rather than lecture based, and depends on your attendance and prior preparation. Your participation grade will be based half on attendance and half on a summary of assigned reading due at the beginning of each class. The summary should be ½ page single spaced, and should demonstrate that you completed the entire reading assignment. A sign in sheet will be available; you must sign in and turn in your summary by 9:00 to receive full credit. Late sign-ins will receive half credit for attendance for the day. Late summaries will not be accepted since the purpose is to ensure you are prepared for class.

Homeworks
Homeworks will be assigned to ensure that you understand the methods discussed in class and employed in lab. These will be throughout the course and will be given in lieu of a midterm exam.

Lab
Lab will be comprised of a set of exercises and accompanying questions to be answered, along with supporting maps and/or other visualizations. Please ensure that ALL visual products conform to the following guidelines:

A good map/visual should be technically correct, aesthetically pleasing, communicative, and thought provoking. Every map that you turn in will be reviewed using the following six guidelines:

1. Is the purpose clear? Is there a succinct and descriptive title?
2. Are all of the data selected relevant to the purpose? Are there one or more reference layers to provide context?
3. Is the selected level of detail appropriate for the purpose?
4. Are symbols distinctive, intuitive, and easy to interpret?
5. Are the categories appropriate for the purpose, and are there few enough to be cognitively manageable (seven or less)? Are the boundaries of the categories logical?
6. Are explanatory aids present? This includes title, date, author, legend, north arrow, scale bar, and data sources.

Preliminary project proposal
The project will be developed around any topic of interest to the student. The project must include some form of simulation that represents entities in space through time, and some outcome of interest that can be measured from simulation results.

The purpose of the project proposal is to verify that the work is appropriate in scope, that the methods proposed are appropriate, that any new data required in fact exist, and that it is possible to complete the project in the time allocated. This description should be 1-2 pages in length. It should be professionally written with paragraphs, complete sentences, and no grammatical errors. Figures should be numbered, labeled, and referenced in the text. Make sure to include the following:

- **Goal:** What problem will be addressed and why it is of interest to you. Please provide a concept map.
- **Entities:** What entities will be modeled? What are their properties and relationships of interest? Please provide a representation of these (from mental modeler or any other tool).
- **What data are required and if new data are needed, where do you intend to obtain these data?**
- **What methods do you intend to use?** Please provide a logic model.
- **What concerns do you have or what problems do you anticipate encountering?**

Final Project
The project must involve spatial simulation through time. It can be conducted from within any of the environments introduced in this class, but if outside of GIS, it must utilize GIS plugins and extensions in significant ways. Results will be presented during a presentation November 28, and in a project report due Wednesday December 7 at 1:00 pm.

Final Project Report Guidelines - Report sections must include:
- Introduction
- Goals and objectives
- Methods
 - Input data types
 - Data abstraction table or diagram: Entities, properties, relationships
 - Logic model
 - Algorithmic flowchart of part of the code, that demonstrates looping and conditionals
 - Pseudocode for that same part of the code
- Results
 - At least one map
 - At least one graph showing analytical results through time
- Issues
 - Whatever issues you encountered that you were unable to resolve in the allotted time.
- Conclusions
 - A few sentences that relate how the results informed your original goals.
SCHEDULE (SUBJECT TO CHANGE)

<table>
<thead>
<tr>
<th>DATE</th>
<th>LECTURE</th>
<th>ADVANCE READING</th>
<th>HOMEWORK</th>
<th>LAB (WED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-Aug</td>
<td>Introduction; Modeling and simulation, representation</td>
<td></td>
<td>HW 1: Essay</td>
<td>Lab 1: Blockley</td>
</tr>
<tr>
<td>29-Aug</td>
<td>Programming fundamentals</td>
<td>Hulse et al. 2016</td>
<td>HW 2: Programming</td>
<td>Lab 2: NetLogo 1</td>
</tr>
<tr>
<td>5-Sep</td>
<td>Labor Day - no class</td>
<td></td>
<td></td>
<td>Lab 3: NetLogo 2</td>
</tr>
<tr>
<td>12-Sep</td>
<td>Modeling goals</td>
<td>Choose 2 of 6 articles from Ecosphere Special Issue</td>
<td>HW 3: Concept map</td>
<td>Lab 4: NetLogo 3</td>
</tr>
<tr>
<td>19-Sep</td>
<td>Problem conceptualization</td>
<td>Argent et al. 2016</td>
<td>HW 4: Entities</td>
<td>Lab 5: NetLogo 4</td>
</tr>
<tr>
<td>26-Sep</td>
<td>Qualitative modeling</td>
<td>Herr et al. 2016</td>
<td>HW 5: MentalModeler</td>
<td>Lab 6: Python 1</td>
</tr>
<tr>
<td>3-Oct</td>
<td>Logic models</td>
<td>Pianosi et al 2016</td>
<td>HW 6: Logic models</td>
<td>Lab 7: Python 2</td>
</tr>
<tr>
<td>10-Oct</td>
<td>Calibration; Verification, & validation</td>
<td>Bennett et al. 2013</td>
<td>HW 7: 2 articles</td>
<td>Lab 8: Python 3</td>
</tr>
<tr>
<td>17-Oct</td>
<td>Modeling complex problems</td>
<td>Kelly et al. 2013</td>
<td>HW 8: Project entities</td>
<td>Lab 9: ArcPy 1</td>
</tr>
<tr>
<td>24-Oct</td>
<td>Modeling examples 1</td>
<td>TBD Student selections</td>
<td>HW 9: Project logic model</td>
<td>Lab 10: ArcPy 2</td>
</tr>
<tr>
<td>31-Oct</td>
<td>Modeling examples 2</td>
<td>TBD Student selections</td>
<td>HW 10: Project proposal</td>
<td>Lab 11: Geosimulation 1</td>
</tr>
<tr>
<td>7-Nov</td>
<td>Modeling examples 3</td>
<td>TBD Student selections</td>
<td></td>
<td>Lab 12: Geosimulation 2</td>
</tr>
<tr>
<td>14-Nov</td>
<td>Share your project design</td>
<td></td>
<td></td>
<td>Work on project</td>
</tr>
<tr>
<td>21-Nov</td>
<td>Computing with complex datasets (guest speaker)</td>
<td></td>
<td></td>
<td>Work on project</td>
</tr>
<tr>
<td>28-Nov</td>
<td>Presentations</td>
<td></td>
<td></td>
<td>Work on project</td>
</tr>
<tr>
<td>7-Dec</td>
<td>Final project write up due Wednesday 1:00 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
 Assigned Journal Articles

Ecosphere Special Issue [Open Access] (choose 2):

