Intro to Elect/Comp Engineering
Fall 2018 Syllabus

Instructor: Dr. Aryzbe Najera
EE1305 (18396)
EE1105 (18395, 15698, and 18537)
Office Hrs and Location:

Instructor: Alejandro Martinez
EE1305 (11837)
EE1105 (11672 and 12886)
Office Hrs and Location: T10.12, TR 10-12
E326

Lecture Course Description (EE1305): In this course students will learn how to use electronic components to build and design circuits for a variety of medical and miscellaneous sensor applications. Through hands on activities, the course will emphasize (1) mathematical and systems concepts that form the basis for electrical engineering, (2) an introduction to circuit components, voltage and current concepts, and (3) sinusoidal signal characteristics, basic filter responses and bandwidth concepts.

Co-requisite for Course: EE1105 Pre-requisites for Course: MATH 1411 with a grade of "C" or better, may be taken concurrently with EE 1305.

Laboratory Course Description (EE1105): Introduction to Electrical Engineering laboratory procedures, causes, and correction of errors in measurements theory of operation and usage of basic Electrical Engineering test instruments, and report writing. Co-requisite: EE 1305.

Course Website: The course website will include the syllabus, class schedule, PowerPoint lectures, and other resources (syllabus/schedule, homework list, required lab supplies, report resources, soldering videos, and other resources). The course website also includes instructor and TA contact information.
http://www.ece.utep.edu/courses/web1305/EE1305/

Learning Outcomes:
1. Become familiar with the Analog Discovery device (oscilloscope and waveform functions).
2. Use MATLAB to model experimental data.
3. Analyze Simple Circuits using KVL, KCL and voltage divider methods.
4. Build circuits using passive and active components. Build and analyze signals through circuits with low pass, high pass and band pass filters.
5. Use Bode Plots to characterize filters and predict signal response.
6. Build circuits using sensor inputs to create a measurable output.
7. Use complex impedance to model and analyze Op-Amp circuits.

Textbook: Students are not required to purchase a textbook. All course material for the lecture and lab is included on the course website. Lecture power point slides are available
that provide a comprehensive resource for learning fundamental circuit theory with plenty of examples and links to educational videos. Additional circuit theory resources are also provided such as:

Introduction to Sensors, Instrumentation and Measurements by Brian Storey
- http://faculty.olin.edu/bstorey/isim.pdf

Circuits I by Digilent - https://learn.digilentinc.com/classroom/realanalog/

Teaching Assistants:
The teaching assistants in each lab are a very valuable resource for students. They have helped develop the labs and have extensive expertise in how the sensors work. The TA’s in charge of the labs and their contact information is listed below.

- Maryamsadat Shokrekhodaei
 PhD Student
 mshokrekhod@miners.utep.edu
- Manuel Martinez
 Graduate Teacher Assistant
 mfmartinez4@miners.utep.edu
- Hector Mota
 Undergraduate Teacher Assistant
 hrmotaaguilar@miners.utep.edu
- Daniel Rios
 Undergraduate Teacher Assistant
 Drios6@miners.utep.edu
- Zenait Lopez
 Undergraduate Teacher Assistant
 zlopezgallegos@miners.utep.edu

Lecture: The EE1305 lecture for section 18396 is scheduled on Tuesdays (10:30 am – 1:20 pm) in Education Building 112. The EE1305 lecture for section 11837 is scheduled on Fridays (10:30 am – 1:20 pm) in CRBL 205.

Laboratories: The EE1105 laboratory is scheduled in E301E 11672 (M), 18537(T), 12886(W), 18395(R), and 15698(R). There is also an open lab schedule, and students are expected to attend at least 1 open lab per week for most weeks throughout the semester. During open lab, students will work problems (at the start of the semester), and will work on their lab modules (beginning the 6th week of the semester).
Course Grade: Your grade for EE1305 and EE1105 will consist of the following components, and will result in the same average and letter grade for both EE1305 and EE1105.

Lab Modules/Reports: 50%
Module Checklists – 10%
Lecture Assignments/Homework: 20%
Quizzes and Exam – 20%

Attendance: Attendance in the lab and lecture will be recorded using a sign in sheet, and the attendance sheet will be picked up 5 minutes after class begins. Students that arrive after the attendance sheet is picked up during lecture and/or lab will be considered absent for that lecture/lab day. The student’s grade will be decreased one letter grade for every 3 absences. When absent, the student is responsible for obtaining notes, handouts, and assignments and will be required to meet the same deadlines as the rest of the class. Excused absences are limited to documented religious holidays and UTEP sponsored activities only. If you do have an emergency, please notify me as soon as possible. Emergencies happen, unexpected situations arise, and you should use common sense and safe precautions when trying to get to lecture and/or lab.

Homework: Homework is worth 20% of the final grade. All problem solving type homework should be completed on engineering paper in a neat and legible manner using the homework format discussed in class. All homework completed in class will be graded by team. While each student completes the assignment, one paper from each team will be collected. Students are expected to discuss the problem solving procedure for each problem in order to ensure that the team is producing high quality work.

For homework completed outside of class, 1-3 random teams will be asked to present their solution. If a student’s team is selected, and they have completed their homework, the student’s grade will not be affected. If the student has not completed their homework, 5 homework points will be deducted. Incomplete homework will also result in a 5 point deduction from the student’s total homework points.

Homework format should include the following:
1. Include EE 1305, Name, Group No., Date
2. Statement of the problem with each solution
3. Equations and Diagrams used to solve the problem
4. Answer Underlined
5. Horizontal line separating each question

Quizzes and Exams: The quiz and exam grade will be worth 20% of the final grade. There is one 10 – 15 minutes quiz for every lecture (20 pts each) and there is one comprehensive exam at the end of the semester worth 200 points. Ten minute quizzes will be given at the beginning of the lecture to help emphasize problem solving and circuit analysis concepts. Students should prepare for the quiz by working all homework problems. The 200 point exam
will be given at the end of the semester and will be based on examples, homework, and quizzes completed throughout the semester. The quiz/exam grade will be calculated by adding the total points earned by the student on all quizzes and on the exam and dividing it by the total possible quiz/exam points (~400 points).

Modules and Checklists: Each module will follow this procedure:
1. Students will be provided with a checklist at the beginning of each module.
2. As the student completes each procedure for the lab module, they will have their work reviewed by one of the TAs. If the work is correct (approved by the TA), the TA will give the student a stamp for that procedure.
3. When all Module requirements have been met, the student will write a report using the report template provided on the course website. A report rubric will also be provided.
4. Each report will be due the following week after it is assigned.
5. Students should staple the following in this order: rubric, checklist, report.
6. Students should sign the authenticity statement on the first page of the report.

Checklists are worth 10% of the course grade and will be turned in with the module report. Each item on the checklist is worth 2 points.

Modules are worth 50% of the course grade and each lab report is worth 100 points. Students are usually given one week to complete each written lab report (unless indicated otherwise on the schedule) and lab reports are due at the beginning of the lab. A lab report template and rubric is provided on the course website to help students understand the lab report requirements. **Late lab reports will not be accepted**, even if you are absent from your lab. Graded lab reports will be returned to students one week after they are turned in.

The modules that will be completed in the lab are: Angle Sensor, Strain Gauge, EKG, O₂ Sensor, Glucose Sensor, Blood Pressure Sensor and Ultrasonic Sensor (assignment dates for each module is included on the course schedule).

Teams: Students will be placed into teams during the first week of class. Student teams will consist of 3 to 4 students per team and students will be on the same team in the lab and the lecture. Students are asked to work on an assignment as a team in the lecture. During these assignments, students are still individually accountable for their own work, and should **NOT** copy from another student’s paper. All labs modules are individual assignments. Students should **NOT** complete work for other students or **COPY** work from other students, but they are encouraged to share their knowledge to help others understand challenging concepts. All data and content submitted in all student lab reports should be individual and reflect their individual lab results.

Course Drop Deadline: November 2nd
Drop Policy: Students can drop the course on or before November 2nd with a grade of “W”. Students who drop the course after November 2nd will be assigned the grade earned in the course.

Scholastic Integrity: As an entity of The University of Texas at El Paso, the Department of Electrical and Computer Engineering is committed to the development of its students and to the promotion of personal integrity and self-responsibility. The assumption that a student’s work is a fair representation of the student’s ability to perform forms the basis for departmental and institutional quality. All students within the Department are expected to observe appropriate standards of conduct. Acts of scholastic dishonesty such as cheating, plagiarism, collusion, the submission for credit of any work or material that are attributable in the whole or in part to another person, taking an examination for another person, any act designed to give unfair advantage to a student, or the attempt to commit such acts will not be tolerated. Any case involving academic dishonesty will be referred to the Engineering Dean’s Office and the Office of the Dean of Students. The Dean of Students will assign a Student Judicial Affairs Coordinator who will investigate the charge and alert the student as to its disposition. Consequences of academic dishonesty may be as severe as dismissal from the University. See the Office of the Dean of Students’ home page at www.utep.edu/dos/acadintg.htm for more information.
Acknowledgement:
I acknowledge that I have received the syllabus for EE 1305 (18396, 11837) and EE1105 (11672, 18537, 12886, 18395, and 15698) for the Fall 2018 semester, and that I understand all attendance, report, and homework/assignment requirements.

__
Print Name

__
Student Signature

__
Date